Single-step genomic prediction of fruit-quality traits using phenotypic records of non-genotyped relatives in citrus

被引:15
|
作者
Imai, Atsushi [1 ,2 ]
Kuniga, Takeshi [3 ]
Yoshioka, Terutaka [3 ]
Nonaka, Keisuke [4 ]
Mitani, Nobuhito [1 ]
Fukamachi, Hiroshi [4 ]
Hiehata, Naofumi [5 ]
Yamamoto, Masashi [6 ]
Hayashi, Takeshi [2 ,7 ]
机构
[1] Natl Agr & Food Res Org, Inst Fruit Tree & Tea Sci, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Grad Sch Life & Environm Sci, Tsukuba, Ibaraki, Japan
[3] Natl Agr & Food Res Org, Western Reg Agr Res Ctr, Zentsuji, Kagawa, Japan
[4] Natl Agr & Food Res Org, Inst Fruit Tree & Tea Sci, Shimizu, Shizuoka, Japan
[5] Nagasaki Prefectural Govt, Nagasaki Agr & Forestry Tech Dev Ctr, Nagasaki, Japan
[6] Kagoshima Univ, Fac Agr, Kagoshima, Kagoshima, Japan
[7] Natl Agr & Food Res Org, Inst Crop Sci, Tsukuba, Ibaraki, Japan
来源
PLOS ONE | 2019年 / 14卷 / 08期
关键词
GENETIC EVALUATION; FULL PEDIGREE; DAIRY-CATTLE; SELECTION; INFORMATION; APPLE; BLUP;
D O I
10.1371/journal.pone.0221880
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The potential of genomic selection (GS) is currently being evaluated for fruit breeding. GS models are usually constructed based on information from both the genotype and phenotype of population. However, information from phenotyped but non-genotyped relatives can also be used to construct GS models, and this additional information can improve their accuracy. In the present study, we evaluated the utility of single-step genomic best linear unbiased prediction (ssGBLUP) in citrus breeding, which is a genomic prediction method that combines the kinship information from genotyped and non-genotyped relatives into a single relationship matrix for a mixed model to apply GS. Fruit weight, sugar content, and acid content of 1,935 citrus individuals, of which 483 had genotype data of 2,354 genome-wide single nucleotide polymorphisms, were evaluated from 2009-2012. The prediction accuracy of ssGBLUP for genotyped individuals was similar to or higher than that of usual genomic best linear unbiased prediction method using only genotyped individuals, especially for sugar content. Therefore, ssGBLUP could yield higher accuracy in genotyped individuals by adding information from non-genotyped relatives. The prediction accuracy of ssGBLUP for non-genotyped individuals was also slightly higher than that of conventional best linear unbiased prediction method using pedigree information. This indicates that ssGBLUP can enhance prediction accuracy of breeding values for non-genotyped individuals using genomic information of genotyped relatives. These results demonstrate the potential of ssGBLUP for fruit breeding, including citrus.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Genomic selection for multiple maternal and growth traits in large white pigs using Single-Step GBLUP
    Fragomeni, Breno
    Vitezica, Zulma
    Liu, Justine
    Huang, Yijian
    Gray, Kent
    Lourenco, Daniela
    Misztal, Ignacy
    JOURNAL OF ANIMAL SCIENCE, 2019, 97 : 42 - 42
  • [42] Estimation of genetic parameters and prediction of breeding values for apple fruit-quality traits using pedigreed plant material in Europe
    Kouassi, Abou Bakari
    Durel, Charles-Eric
    Costa, Fabrizio
    Tartarini, Stefano
    van de Weg, Eric
    Evans, Kate
    Fernandez-Fernandez, Felicidad
    Govan, Ceri
    Boudichevskaja, Anastasia
    Dunemann, Frank
    Antofie, Adriana
    Lateur, Marc
    Stankiewicz-Kosyl, Marta
    Soska, Andrzej
    Tomala, Kazimierz
    Lewandowski, Markus
    Rutkovski, Krzysztof
    Zurawicz, Edwards
    Guerra, Walter
    Laurens, Francois
    TREE GENETICS & GENOMES, 2009, 5 (04) : 659 - 672
  • [43] Comparison of genomic predictions for lowly heritable traits using multi-step and single-step genomic best linear unbiased predictor in Holstein cattle
    Guarini, A. R.
    Lourenco, D. A. L.
    Brito, L. F.
    Sargolzaei, M.
    Baes, C. F.
    Miglior, F.
    Misztal, I.
    Schenkel, F. S.
    JOURNAL OF DAIRY SCIENCE, 2018, 101 (09) : 8076 - 8086
  • [44] Estimation of genetic parameters and prediction of breeding values for apple fruit-quality traits using pedigreed plant material in Europe
    Abou Bakari Kouassi
    Charles-Eric Durel
    Fabrizio Costa
    Stefano Tartarini
    Eric van de Weg
    Kate Evans
    Felicidad Fernandez-Fernandez
    Ceri Govan
    Anastasia Boudichevskaja
    Frank Dunemann
    Adriana Antofie
    Marc Lateur
    Marta Stankiewicz-Kosyl
    Andrzej Soska
    Kazimierz Tomala
    Markus Lewandowski
    Krzysztof Rutkovski
    Edwards Zurawicz
    Walter Guerra
    François Laurens
    Tree Genetics & Genomes, 2009, 5 : 659 - 672
  • [45] Single-Step Genomic Evaluation for Meat Quality Traits, Sensory Characteristics, and Fatty-Acid Composition in Duroc Pigs
    Lopez, Bryan Irvine
    Santiago, Kier Gumangan
    Lee, Donghui
    Cho, Younggyu
    Lim, Dajeong
    Seo, Kangseok
    GENES, 2020, 11 (09) : 1 - 13
  • [46] Genomic evaluation of carcass traits of Korean beef cattle Hanwoo using a single-step marker effect model
    Koo, Yangmo
    Alkhoder, Hatem
    Choi, Tae-Jeong
    Liu, Zengting
    Reents, Reinhard
    JOURNAL OF ANIMAL SCIENCE, 2023, 101
  • [47] Genomic evaluation of carcass traits of Korean beef cattle Hanwoo using a single-step marker effect model
    Koo, Yangmo
    Alkhoder, Hatem
    Choi, Tae-Jeong
    Liu, Zengting
    Reents, Reinhard
    JOURNAL OF ANIMAL SCIENCE, 2023, 101
  • [48] The impact of selective genotyping on the response to selection using single-step genomic best linear unbiased prediction
    Howard, Jeremy T.
    Rathje, Tom A.
    Bruns, Caitlyn E.
    Wilson-Wells, Danielle F.
    Kachman, Stephen D.
    Spangler, Matthew L.
    JOURNAL OF ANIMAL SCIENCE, 2018, 96 (11) : 4532 - 4542
  • [49] Using pooled data for single-step genomic prediction: Impact of within-pool variance and size
    Baller, Johnna L.
    Kachman, Stephen D.
    Kuehn, Larry A.
    Spangler, Matthew L.
    JOURNAL OF ANIMAL SCIENCE, 2020, 98 : 9 - 9
  • [50] Genome-enabled prediction of meat and carcass traits using Bayesian regression, single-step genomic best linear unbiased prediction and blending methods in Nelore cattle
    Lopes, F. B.
    Baldi, F.
    Passafaro, T. L.
    Brunes, L. C.
    Costa, M. F. O.
    Eifert, E. C.
    Narciso, M. G.
    Rosa, G. J. M.
    Lobo, R. B.
    Magnabosco, C. U.
    ANIMAL, 2021, 15 (01)