Intermittent many-body dynamics at equilibrium

被引:53
|
作者
Danieli, C. [1 ,2 ]
Campbell, D. K. [3 ]
Flach, S. [1 ,2 ]
机构
[1] Massey Univ, Ctr Theoret Chem & Phys, New Zealand Inst Adv Study, Auckland 0745, New Zealand
[2] Inst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon 34051, South Korea
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
关键词
PASTA-ULAM PROBLEM; DISCRETE BREATHERS; HAMILTONIAN-SYSTEMS; FERMI; CHAOS;
D O I
10.1103/PhysRevE.95.060202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q-breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] SAMPLING METHODS FOR MANY-BODY DYNAMICS
    PERCUS, JK
    YEVICK, GJ
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (04): : 615 - &
  • [22] Many-body interference in bosonic dynamics
    Dufour, Gabriel
    Bruenner, Tobias
    Rodriguez, Alberto
    Buchleitner, Andreas
    [J]. NEW JOURNAL OF PHYSICS, 2020, 22 (10):
  • [23] Bosonization of Fermionic Many-Body Dynamics
    Niels Benedikter
    Phan Thành Nam
    Marcello Porta
    Benjamin Schlein
    Robert Seiringer
    [J]. Annales Henri Poincaré, 2022, 23 : 1725 - 1764
  • [24] MANY-BODY FORCES AND THE MANY-BODY PROBLEM
    POLKINGHORNE, JC
    [J]. NUCLEAR PHYSICS, 1957, 3 (01): : 94 - 96
  • [25] Three-body forces and many-body dynamics
    V. G. Zelevinsky
    [J]. Physics of Atomic Nuclei, 2009, 72 : 1107 - 1115
  • [26] Three-body forces and many-body dynamics
    Zelevinsky, V. G.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2009, 72 (07) : 1107 - 1115
  • [27] From multi-body to many-body dynamics
    Theodossiades, S.
    Teodorescu, M.
    Rahnejat, H.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2009, 223 (12) : 2835 - 2847
  • [28] Nonlinear brain dynamics and many-body field dynamics
    Freeman, WJ
    Vitiello, G
    [J]. ELECTROMAGNETIC BIOLOGY AND MEDICINE, 2005, 24 (03) : 233 - 241
  • [29] On equilibrium points in a circular restricted many-body problem
    Gonchar, AA
    [J]. DOKLADY MATHEMATICS, 2002, 65 (02) : 198 - 201
  • [30] Many-body wavefunctions for quantum impurities out of equilibrium
    Culver, Adrian B.
    Andrei, Natan
    [J]. PHYSICAL REVIEW B, 2021, 103 (20)