Intermittent many-body dynamics at equilibrium

被引:53
|
作者
Danieli, C. [1 ,2 ]
Campbell, D. K. [3 ]
Flach, S. [1 ,2 ]
机构
[1] Massey Univ, Ctr Theoret Chem & Phys, New Zealand Inst Adv Study, Auckland 0745, New Zealand
[2] Inst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon 34051, South Korea
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
关键词
PASTA-ULAM PROBLEM; DISCRETE BREATHERS; HAMILTONIAN-SYSTEMS; FERMI; CHAOS;
D O I
10.1103/PhysRevE.95.060202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q-breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Far-from-equilibrium quantum many-body dynamics
    Thomas Gasenzer
    Stefan Keßler
    Jan M. Pawlowski
    [J]. The European Physical Journal C, 2010, 70 : 423 - 443
  • [2] Far-from-equilibrium quantum many-body dynamics
    Gasenzer, Thomas
    Kessler, Stefen
    Pawlowski, Jan M.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2010, 70 (1-2): : 423 - 443
  • [3] Intermittent turbulence in a many-body system
    Gogia, Guram
    Yu, Wentao
    Burton, Justin C.
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [4] Out of equilibrium many-body expansion dynamics of strongly interacting bosons
    Roy, Rhombik
    Chakrabarti, Barnali
    Gammal, Arnaldo
    [J]. SCIPOST PHYSICS CORE, 2023, 6 (04):
  • [5] Non-Equilibrium Many-Body Dynamics Following A Quantum Quench
    Vyas, Manan
    [J]. FIFTH CONFERENCE ON NUCLEI AND MESOSCOPIC PHYSICS, 2017, 1912
  • [6] Dynamics of many-body localization
    Bar Lev, Yevgeny
    Reichman, David R.
    [J]. PHYSICAL REVIEW B, 2014, 89 (22)
  • [7] Scaling approach to quantum non-equilibrium dynamics of many-body systems
    Gritsev, Vladimir
    Barmettler, Peter
    Demler, Eugene
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [8] Exact equation for classical many-body systems: Passage from dynamics to equilibrium
    Zakharov, A. Yu.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2016, 116 (03) : 247 - 251
  • [9] Quantum many-body systems out of equilibrium
    Eisert J.
    Friesdorf M.
    Gogolin C.
    [J]. Nature Physics, 2015, 11 (02) : 124 - 130
  • [10] Quantum Many-Body Systems in Thermal Equilibrium
    Alhambra, Alvaro M.
    [J]. PRX QUANTUM, 2023, 4 (04):