Spectral properties of periodic media in the large coupling limit

被引:69
|
作者
Hempel, R [1 ]
Lienau, K
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
[2] TU Braunschweig, Inst Anal, D-38106 Braunschweig, Germany
关键词
D O I
10.1080/03605300008821555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the band-gap structure and the integrated density of states for a class of periodic divergence type operators which, in the simplest case, are given by T-lambda = -del . (1 + lambda(chi Omega)) del, lambda greater than or equal to 1, acting in L-2(R-m) with m greater than or equal to 2. We assume here that Omega is an open, connected, periodic subset of R-m and that the complement M of Omega does not intersect the boundary of the fundamental period cell Q(o). Operators of this type occur in simple models for heat conduction (or propagation of acoustic waves) in a metal with impurities like grains of sand or air bubbles, and in connection with photonic crystals. Among other results, we find that T-lambda will always have at least one open gap, for lambda large (except for trivial cases). We also establish a connection between the band-gap structure of T-lambda and the Dirichlet eigenvalue problem on M-o = M boolean AND Q(o).
引用
收藏
页码:1445 / 1470
页数:26
相关论文
共 50 条
  • [21] LIMIT-PERIODIC DIELECTRIC MEDIA
    REDHEFFER, RM
    JOURNAL OF APPLIED PHYSICS, 1957, 28 (07) : 820 - 821
  • [22] Spectral properties of polyharmonic operators with limit-periodic potential in dimension two
    Karpeshina, Yulia
    Lee, Young-Ran
    JOURNAL D ANALYSE MATHEMATIQUE, 2007, 102 (1): : 225 - 310
  • [23] Spectral properties of a limit-periodic Schrödinger operator in dimension two
    Yulia Karpeshina
    Young-Ran Lee
    Journal d'Analyse Mathématique, 2013, 120 : 1 - 84
  • [24] Spectral properties of polyharmonic operators with limit-periodic potential in dimension two
    Yulia Karpeshina
    Young-Ran Lee
    Journal d'Analyse Mathématique, 2007, 102 : 225 - 310
  • [25] The Discrete Spectrum¶of the Perturbed Periodic Schrödinger Operator¶in the Large Coupling Constant Limit
    Oleg Safronov
    Communications in Mathematical Physics, 2001, 218 : 217 - 232
  • [26] Spectral properties of classical waves in high-contrast periodic media
    Figotin, A
    Kuchment, P
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (02) : 683 - 702
  • [27] The spectral properties of the Falicov-Kimball model in the weak-coupling limit
    Farkasovsky, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (10): : 2083 - 2093
  • [28] Kinematic limit analysis of periodic heterogeneous media
    Carvelli, V
    Maier, G
    Taliercio, A
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2000, 1 (02): : 19 - 30
  • [29] POTENTIAL SCATTERING IN LIMIT OF LARGE COUPLING
    CHADAN, K
    MOURRE, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1969, 64 (04): : 961 - +
  • [30] Spectral homogeneity of limit-periodic Schrodinger operators
    Fillman, Jake
    Lukic, Milivoje
    JOURNAL OF SPECTRAL THEORY, 2017, 7 (02) : 387 - 406