Aspects of optimization with stochastic dominance

被引:2
|
作者
Haskell, William B. [1 ]
Shanthikumar, J. George [2 ]
Shen, Z. Max [3 ]
机构
[1] Natl Univ Singapore, Singapore, Singapore
[2] Purdue Univ, W Lafayette, IN 47907 USA
[3] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
Stochastic dominance; Convex optimization; Sample average approximation; Duality; PERFORMANCE TARGETS; DECISION-MAKING; CONSTRAINTS; PROGRAMS;
D O I
10.1007/s10479-016-2299-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider stochastic optimization problems with integral stochastic order constraints. This problem class is characterized by an infinite number of constraints indexed by a function space of increasing concave utility functions. We are interested in effective numerical methods and a Lagrangian duality theory. First, we show how sample average approximation and linear programming can be combined to provide a computational scheme for this problem class. Then, we compute the Lagrangian dual problem to gain more insight into this problem class.
引用
收藏
页码:247 / 273
页数:27
相关论文
共 50 条
  • [21] Stochastic Programming with Multivariate Second Order Stochastic Dominance Constraints with Applications in Portfolio Optimization
    Rudabeh Meskarian
    Jörg Fliege
    Huifu Xu
    Applied Mathematics & Optimization, 2014, 70 : 111 - 140
  • [22] Whale Optimization Algorithm for Multiconstraint Second-Order Stochastic Dominance Portfolio Optimization
    Zhai, Q. H.
    Ye, T.
    Huang, M. X.
    Feng, S. L.
    Li, H.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2020, 2020 (2020)
  • [23] Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints
    Darinka Dentcheva
    Andrzej Ruszczyński
    Mathematical Programming, 2004, 99 : 329 - 350
  • [24] Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints
    Dentcheva, D
    Ruszczynski, A
    MATHEMATICAL PROGRAMMING, 2004, 99 (02) : 329 - 350
  • [25] Electric Company Portfolio Optimization Under Interval Stochastic Dominance Constraints
    Berleant, D.
    Dancre, M.
    Argaud, J. P.
    Sheble, G.
    ISIPTA 05-PROCEEDINGS OF THE FOURTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES AND THEIR APPLICATIONS, 2005, : 51 - 57
  • [26] Robust stochastic dominance and its application to risk-averse optimization
    Darinka Dentcheva
    Andrzej Ruszczyński
    Mathematical Programming, 2010, 123 : 85 - 100
  • [27] Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems
    Yang, Qiang
    Hua, Litao
    Gao, Xudong
    Xu, Dongdong
    Lu, Zhenyu
    Jeon, Sang-Woon
    Zhang, Jun
    MATHEMATICS, 2022, 10 (05)
  • [28] Robust stochastic dominance and its application to risk-averse optimization
    Dentcheva, Darinka
    Ruszczynski, Andrzej
    MATHEMATICAL PROGRAMMING, 2010, 123 (01) : 85 - 100
  • [29] Second order stochastic dominance portfolio optimization for an electric energy company
    Cheong, M. -P.
    Sheble, G. B.
    Berleant, D.
    Teoh, C. -C.
    Argaud, J. -P.
    Dancre, M.
    Andrieu, L.
    Barjon, F.
    2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, : 819 - +
  • [30] Adjustable light robust optimization with second order stochastic dominance constraints
    Ji, Xinzhi
    Guo, Ranran
    Ye, Wuyi
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2024, 73