Optimal Multiple Assignment Schemes Using Ideal Multipartite Secret Sharing Schemes

被引:0
|
作者
Eriguchi, Reo [1 ]
Kunihiro, Noboru [2 ]
Iwamoto, Mitsugu [3 ]
机构
[1] Univ Tokyo, Dept Complex Sci & Engn, Tokyo, Japan
[2] Univ Tokyo, Dept Comp Sci, Tokyo, Japan
[3] Univ Electrocommun, Dept Informat, Chofu, Tokyo, Japan
关键词
D O I
10.1109/isit.2019.8849591
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A multiple assignment scheme (MAS) is a method to construct secret sharing schemes (SSSs) for general access structures. There are MASs using threshold and ramp SSSs. The paper proposes new MASs using ideal SSSs realizing compartmented access structures and those using SSSs realizing multi-level access structures. Since the ideal SSSs realizing compartmented access structures and SSSs realizing multi-level access structures are natural generalizations of threshold and ramp SSSs, respectively, the new MASs cannot be less efficient than those using threshold or ramp SSSs.
引用
收藏
页码:3047 / 3051
页数:5
相关论文
共 50 条
  • [41] On identification secret sharing schemes
    Cai, N
    Lam, KY
    INFORMATION AND COMPUTATION, 2003, 184 (02) : 298 - 310
  • [42] On Proactive Secret Sharing Schemes
    Nikov, V
    Nikova, S
    SELECTED AREAS IN CRYPTOGRAPHY, 2005, 3357 : 308 - 325
  • [43] Secret sharing schemes on graphs
    Csirmaz, Laszlo
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2007, 44 (03) : 297 - 306
  • [44] PERFECT SECRET SHARING SCHEMES
    Parvatov, K. G.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2008, 2 (02): : 50 - 57
  • [45] Partial Secret Sharing Schemes
    Jafari, Amir
    Khazaei, Shahram
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (08) : 5364 - 5385
  • [46] Efficient Secret Sharing Schemes
    Lv, Chunli
    Jia, Xiaoqi
    Lin, Jingqiang
    Jing, Jiwu
    Tian, Lijun
    Sun, Mingli
    SECURE AND TRUST COMPUTING, DATA MANAGEMENT, AND APPLICATIONS, 2011, 186 : 114 - +
  • [47] Anonymous secret sharing schemes
    Blundo, C
    Stinson, DR
    DISCRETE APPLIED MATHEMATICS, 1997, 77 (01) : 13 - 28
  • [48] Explication of secret sharing schemes
    Stinson, D.R.
    Designs, Codes, and Cryptography, 1992, 2 (04)
  • [49] Optimal codes from Fibonacci polynomials and secret sharing schemes
    Koroglu M.E.
    Ozbek I.
    Siap I.
    Arabian Journal of Mathematics, 2017, 6 (4) : 297 - 308
  • [50] Determining the optimal contrast for secret sharing schemes in visual cryptography
    Krause, M
    Simon, HU
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (03): : 285 - 299