On the one-dimensional reggeon model: eigenvalues of the Hamiltonian and the propagator

被引:3
|
作者
Braun, M. A. [1 ]
Kuzminskii, E. M. [1 ]
Kozhedub, A., V [2 ]
Puchkov, A. M. [1 ]
Vyazovsky, M., I [1 ]
机构
[1] St Petersburg State Univ, Dept High Energy Phys, St Petersburg 198504, Russia
[2] St Petersburg State Univ, Dept Computat Phys, St Petersburg 198504, Russia
来源
EUROPEAN PHYSICAL JOURNAL C | 2019年 / 79卷 / 08期
关键词
PSEUDO-HERMITICITY; SYMMETRY;
D O I
10.1140/epjc/s10052-019-7187-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The effective reggeon field theory in zero transverse dimension ("the toy model") is studied. The transcendental equation for the eigenvalues of the Hamiltonian of this theory is derived and solved numerically. The found eigenvalues are used for the calculation of the pomeron propagator.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] EIGENVALUES OF LIOUVILLE EQUATION FOR A ONE-DIMENSIONAL SYSTEM
    SUTHERLAND, B
    PHYSICAL REVIEW LETTERS, 1969, 22 (09) : 393 - +
  • [22] Eigenvalues of a One-Dimensional Dirac Operator Pencil
    Elton, Daniel M.
    Levitin, Michael
    Polterovich, Iosif
    ANNALES HENRI POINCARE, 2014, 15 (12): : 2321 - 2377
  • [23] Eigenvalues and Eigenfunctions of One-Dimensional Fractal Laplacians
    Tang, Wei
    Guo, Jia
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (03) : 996 - 1010
  • [24] Eigenvalues of a One-Dimensional Dirac Operator Pencil
    Daniel M. Elton
    Michael Levitin
    Iosif Polterovich
    Annales Henri Poincaré, 2014, 15 : 2321 - 2377
  • [25] Eigenvalues and Eigenfunctions of One-Dimensional Fractal Laplacians
    Wei Tang
    Jia Guo
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 996 - 1010
  • [26] Multiple eigenvalues of a one-dimensional quasilinear problem
    D. P. Kostomarov
    E. A. Sheina
    Doklady Mathematics, 2011, 83 : 324 - 327
  • [27] Eigenvalues and the one-dimensional p-Laplacian
    Agarwal, RP
    Lü, HS
    O'Regan, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (02) : 383 - 400
  • [28] Eigenvalues of energy of a one-dimensional asymmetric well
    Aquino, N
    Campoy, G
    Yee-Madeira, H
    REVISTA MEXICANA DE FISICA, 2000, 46 (02) : 201 - 206
  • [29] On the existence of eigenvalues of a one-dimensional Dirac operator
    Sanchez-Mendoza, Daniel
    Winklmeier, Monika
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 549 (02)
  • [30] A Study of Resonances in a One-Dimensional Model with Singular Hamiltonian and Mass Jumps
    Alvarez, J. J.
    Gadella, M.
    Nieto, L. M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (07) : 2161 - 2169