Variations in piscivory of invasive largemouth bass Micropterus salmoides associated with pond environments

被引:9
|
作者
Tsunoda, Hiroshi [1 ]
Mitsuo, Yoshito [2 ]
机构
[1] Ctr Environm Sci Saitama, 914 Kamitanadare, Kazo, Saitama 3470115, Japan
[2] Niigata Univ, Ctr Toki & Ecol Restorat, 1101-1 Niibo Katagami, Sado, Niigata 9520103, Japan
关键词
Aquatic vegetation; Micropterus salmoides; Non-indigenous species; Refuge effect; Stomach contents; PREY SELECTION; FARM PONDS; FISH; BLUEGILL; LAKE; TURBIDITY; DIET; COMPLEXITY; PREDATORS; DIVERSITY;
D O I
10.1007/s10201-018-0544-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Introductions of non-native predatory fishes can be a major driver of aquatic biodiversity loss. The largemouth bass Micropterus salmoides (L.) has been introduced throughout much of the world, thereafter negatively affecting native faunal communities owing to its predatory impact. To investigate the environmental factors affecting the predatory performance of invasive bass, we examined the stomach contents and habitat characteristics of bass in 15 irrigation farm ponds in northeastern Japan. The food habits of the bass populations differed among the studied ponds: the predominant prey items were fishes among bass in seven of the ponds, whereas aquatic invertebrates (mainly insects and zooplankton) were the predominant taxa in the diets of bass in the eight remaining ponds, with the onset of piscivory related to body size. The results of multivariate analysis indicated that the extent to which the bass consumed fish was positively associated with fish prey abundance and negatively associated with percentage of aquatic vegetation coverage. We suggest that the extent of aquatic vegetation coverage strongly influenced the predation efficiency of bass in the ponds. These findings might be employed to assess a pond ecosystem's vulnerability to invasive largemouth bass and to reduce the predator's impact on native fish species by improvements to the habitat.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 50 条
  • [22] Characterization of annual reproductive cycles for pond-reared Florida largemouth bass Micropterus salmoides floridanus
    Gross, TS
    Wieser, CM
    Sepúlveda, MS
    Wiebe, JJ
    Schoeb, TR
    Denslow, ND
    BLACK BASS: ECOLOGY, CONSERVATION, AND MANAGEMENT, 2002, 31 : 205 - 212
  • [23] Dietary threonine requirement of juvenile largemouth bass, Micropterus salmoides
    Rahman, Mohammad Mizanur
    Li, Xiaoqin
    Sharifuzzaman, S. M.
    He, Ming
    Poolsawat, Lumpan
    Yang, Hang
    Leng, Xiangjun
    AQUACULTURE, 2021, 543
  • [24] Latitudinal variation in the geometric morphology of the largemouth bass, Micropterus salmoides
    Hall, Elijah S.
    Martin, Benjamin E.
    Brubaker, Kristen
    Grant, Christopher J.
    MARINE AND FRESHWATER RESEARCH, 2018, 69 (09) : 1480 - 1485
  • [25] Isolation and characterization of 40 SNP in largemouth bass (Micropterus salmoides)
    Fan, Jiajia
    Bai, Junjie
    Ma, Dongmei
    CONSERVATION GENETICS RESOURCES, 2020, 12 (01) : 57 - 60
  • [26] Food Chain Transfer of Perchlorate in Largemouth Bass, Micropterus salmoides
    J.-W. Park
    J. Rinchard
    T. A. Anderson
    F. Liu
    C. W. Theodorakis
    Bulletin of Environmental Contamination and Toxicology, 2005, 74 : 56 - 63
  • [27] Oxidation of energy substrates in tissues of largemouth bass (Micropterus salmoides)
    Xinyu Li
    Sichao Shixuan Zheng
    Fei Jia
    Chuanpeng Song
    Guoyao Zhou
    Amino Acids, 2020, 52 : 1017 - 1032
  • [28] Survival of Foul-Hooked Largemouth Bass (Micropterus salmoides)
    Pope, Kevin L.
    Wilde, Gene R.
    JOURNAL OF FRESHWATER ECOLOGY, 2010, 25 (01) : 135 - 139
  • [29] Retrospect of fishmeal substitution in largemouth bass (Micropterus salmoides): a review
    Yuanyi Liu
    Changchang Pu
    Zhuo Pei
    Weichuan Zhang
    Zihui Wei
    Hongyu Chen
    Yong Huang
    Fish Physiology and Biochemistry, 2025, 51 (1)
  • [30] Maternally transferred mercury in wild largemouth bass, Micropterus salmoides
    Sackett, Dana K.
    Aday, D. Derek
    Rice, James A.
    Cope, W. Gregory
    ENVIRONMENTAL POLLUTION, 2013, 178 : 493 - 497