Bootstrap Inference Longitudinal Semiparametric Regression Model

被引:0
|
作者
Pane, Rahmawati [1 ,2 ]
Otok, Bambang Widjanarko [1 ]
Zain, Ismaini [1 ]
Budiantara, I. Nyoman [1 ]
机构
[1] Sepuluh Nopember Inst Technol ITS, Dept Stat, Surabaya, Indonesia
[2] Univ North Sumatra, Math Dept, Medan, Indonesia
关键词
semiparametric regression; nonparametric component; longitudinal semiparametric regression; bootstrap; APPROXIMATION;
D O I
10.1063/1.4940867
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Semiparametric regression contains two components, i.e. parametric and nonparametric component. Semiparametric regression model is represented by y(ti) = mu((x') under tilde (ti), z(ti)) + epsilon(ti) where mu((x') under tilde (ti),z(ti)) = (x') under tilde (ti)beta + g(z(ti)), and y(ti) is response variable. It is assumed to have a linear relationship with the predictor variables (x') under tilde (ti) = (x(1i1), x(2i2), ..., x(Tir)). Random error epsilon(ti), i = 1, ..., n, t = 1, ... , T is normally distributed with zero mean and variance sigma(2) and g(z(ti)) nonparametric component. The results of this study showed that the PLS approach on longitudinal semiparametric regression models obtain estimators <(<(beta)over cap>)over tilde>(t) = [X'II(lambda)X](-1) X'II(lambda)y and <(<(g)over cap>)over tilde>lambda(z)=M(lambda)y. The result also show that bootstrap was valid on longitudinal semiparametric regression model with (g) over tilde ((b))(lambda) (z) as nonparametric component estimator.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Functional inference in semiparametric models using the piggyback bootstrap
    Dixon, JR
    Kosorok, MR
    Lee, BL
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2005, 57 (02) : 255 - 277
  • [22] Bayesian inference for semiparametric binary regression
    Newton, MA
    Czado, C
    Chappell, R
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) : 142 - 153
  • [23] Semiparametric Bayesian inference for regression models
    Seifu, Y
    Severini, TA
    Tanner, MA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 719 - 734
  • [24] VARIATIONAL INFERENCE FOR HETEROSCEDASTIC SEMIPARAMETRIC REGRESSION
    Menictas, Marianne
    Wand, Matt P.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2015, 57 (01) : 119 - 138
  • [25] A Semiparametric Change-Point Regression Model for Longitudinal Observations
    Xing, Haipeng
    Ying, Zhiliang
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1625 - 1637
  • [26] Statistical inference for a semiparametric measurement error regression model with heteroscedastic errors
    Zhou, Haibo
    You, Jinhong
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (07) : 2263 - 2276
  • [27] Consistent covariate selection and post model selection inference in semiparametric regression
    Bunea, F
    [J]. ANNALS OF STATISTICS, 2004, 32 (03): : 898 - 927
  • [28] On inference for a semiparametric partially linear regression model with serially correlated errors
    You, Jinhong
    Chen, Gemai
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (04): : 515 - 531
  • [29] Distributed inference for the quantile regression model based on the random weighted bootstrap
    Xiao, Peiwen
    Liu, Xiaohui
    Li, Anna
    Pan, Guangming
    [J]. INFORMATION SCIENCES, 2024, 680
  • [30] Variational Inference for Count Response Semiparametric Regression
    Luts, J.
    Wand, M. P.
    [J]. BAYESIAN ANALYSIS, 2015, 10 (04): : 991 - 1023