FE/FMBE coupling to model fluid-structure interaction

被引:35
|
作者
Schneider, S. [1 ]
机构
[1] CNRS LMA, F-13402 Marseille 20, France
关键词
fluid-structure coupling; FEM; BEM; fast multipole method; absorbing materials;
D O I
10.1002/nme.2399
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper a finite element (FE)/fast multipole boundary element (FMBE)-coupling method is present for modeling fluid-structure interaction problems numerically. Vibrating structures are assumed to consist of elastic or sound absorbing materials. An FE method (FEM) is used for this part of the solution. This structural sub-domain is embedded in a homogeneous fluid. The case where the boundary of the structural sub-domain has a very complex geometry is of special interest. In this case, the BE method (BEM) is a more suitable numerical tool than FEM to account for the sound propagation in the homogeneous fluid. The efficiency of the BEM is increased by using FMBEM. The BE-surface mesh required is directly generated by the FE-mesh used to discretize the structural sub-domain and the absorbing material. This FE/FMBE-coupling method makes it possible to predict the effects of arbitrarily shaped absorbing materials and vibrating structures on the sound field in the surrounding fluid numerically. This coupling method proposed is used to study the acoustic behavior of the lining of an anechoic chamber and that of an entire anechoic chamber in the low-frequency range. The numerical results obtained are compared with the experimental data. Copyright (c) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:2137 / 2156
页数:20
相关论文
共 50 条
  • [1] Fluid-structure interaction coupling CFD and FEA
    Marriott, Douglas
    [J]. PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2014, 14 (01): : 57 - 64
  • [2] A REDUCED BASIS MODEL WITH PARAMETRIC COUPLING FOR FLUID-STRUCTURE INTERACTION PROBLEMS
    Lassila, Toni
    Quarteroni, Alfio
    Rozza, Gianluigi
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A1187 - A1213
  • [3] Numerical Model for the Analysis of Fluid-Structure Interaction Problems with Cable Coupling
    Tonin, Mateus Guimarães
    Braun, Alexandre Luis
    [J]. Defect and Diffusion Forum, 2023, 427 : 205 - 214
  • [4] Coupled FE/BE Formulations for the Fluid-Structure Interaction
    Of, Guenther
    Steinbach, Olaf
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 293 - 300
  • [5] A particle model for fluid-structure interaction
    Cottet, GH
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 335 (10) : 833 - 838
  • [6] A FE-BE coupling for a fluid-structure interaction problem: Hierarchical a posteriori error estimates
    Dominguez, Catalina
    Stephan, Ernst P.
    Maischak, Matthias
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (05) : 1417 - 1439
  • [7] An Iterative Solver for FE-BE Coupling in Large-Scale Fluid-Structure Interaction
    Liu Jinshi
    Sun Chao
    [J]. 2016 IEEE/OES CHINA OCEAN ACOUSTICS SYMPOSIUM (COA), 2016,
  • [8] Coupling strategies for biomedical fluid-structure interaction problems
    Kuettler, U.
    Gee, M.
    Foerster, Ch.
    Comerford, A.
    Wall, W. A.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2010, 26 (3-4) : 305 - 321
  • [9] Analysis and Acceleration of a Fluid-Structure Interaction Coupling Scheme
    Doerfel, Michael R.
    Simeon, Bernd
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 307 - 315
  • [10] FLUID-STRUCTURE INTERACTION BASED ON HPC MULTICODE COUPLING
    Cajas, J. C.
    Houzeaux, G.
    Vazquez, M.
    Garcia, M.
    Casoni, E.
    Calmet, H.
    Artigues, A.
    Borrell, R.
    Lehmkuhl, O.
    Pastrana, D.
    Yanez, D. J.
    Pons, R.
    Martorell, J.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : C677 - C703