We present a new model reduction technique for steady fluid-structure interaction problems. When the fluid domain deformation is suitably parametrized, the coupling conditions between the fluid and the structure can be formulated in the low-dimensional space of geometric parameters. Moreover, we apply the reduced basis method to reduce the cost of repeated fluid solutions necessary to achieve convergence of fluid-structure iterations. In this way a reduced order model with reliable a posteriori error bounds is obtained. The proposed method is validated with an example of steady Stokes flow in an axisymmetric channel, where the structure is described by a simple one-dimensional generalized string model. We demonstrate rapid convergence of the reduced solution of the parametrically coupled problem as the number of geometric parameters is increased.
机构:
Univ Vienna, Dept Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaUniv Vienna, Dept Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Nonino, Monica
Ballarin, Francesco
论文数: 0|引用数: 0|
h-index: 0|
机构:
Univ Cattolica Sacro Cuore, Dept Math & Phys, Via Musei 41, I-25121 Brescia, ItalyUniv Vienna, Dept Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Ballarin, Francesco
Rozza, Gianluigi
论文数: 0|引用数: 0|
h-index: 0|
机构:
Int Sch Adv Studies SISSA, MathLab, Math Area, Via Bonomea 265, I-34136 Trieste, ItalyUniv Vienna, Dept Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
机构:
Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Av. Osvaldo Aranha 99 - RS, Porto AlegrePrograma de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Av. Osvaldo Aranha 99 - RS, Porto Alegre
Tonin M.G.
Braun A.L.
论文数: 0|引用数: 0|
h-index: 0|
机构:
Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Av. Osvaldo Aranha 99 - RS, Porto AlegrePrograma de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Av. Osvaldo Aranha 99 - RS, Porto Alegre