A REDUCED BASIS MODEL WITH PARAMETRIC COUPLING FOR FLUID-STRUCTURE INTERACTION PROBLEMS

被引:20
|
作者
Lassila, Toni [1 ,2 ]
Quarteroni, Alfio [2 ,3 ]
Rozza, Gianluigi [2 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, Helsinki, Finland
[2] Ecole Polytech Fed Lausanne, Modelling & Sci Comp CMCS, Lausanne, Switzerland
[3] Politecn Milan, Modelling & Sci Comp MOX, I-20133 Milan, Italy
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2012年 / 34卷 / 02期
关键词
fluid-structure interaction; model reduction; incompressible Stokes equations; reduced basis method; free-form deformation; NAVIER-STOKES EQUATIONS; POSTERIORI ERROR ESTIMATION; BASIS APPROXIMATION; FLOW; NONAFFINE; COMPUTATION; STABILITY; ALGORITHM; BOUNDS;
D O I
10.1137/110819950
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new model reduction technique for steady fluid-structure interaction problems. When the fluid domain deformation is suitably parametrized, the coupling conditions between the fluid and the structure can be formulated in the low-dimensional space of geometric parameters. Moreover, we apply the reduced basis method to reduce the cost of repeated fluid solutions necessary to achieve convergence of fluid-structure iterations. In this way a reduced order model with reliable a posteriori error bounds is obtained. The proposed method is validated with an example of steady Stokes flow in an axisymmetric channel, where the structure is described by a simple one-dimensional generalized string model. We demonstrate rapid convergence of the reduced solution of the parametrically coupled problem as the number of geometric parameters is increased.
引用
下载
收藏
页码:A1187 / A1213
页数:27
相关论文
共 50 条
  • [31] Preface: Simulation of Fluid-Structure Interaction Problems
    Li, Zhilin
    Wang, X. Sheldon
    Zhang, Lucy T.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2019, 119 (01): : 1 - 3
  • [32] ALE formulation for fluid-structure interaction problems
    Souli, M
    Ouahsine, A
    Lewin, L
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (5-7) : 659 - 675
  • [33] SOME TYPE PROBLEMS OF FLUID-STRUCTURE INTERACTION
    SCANLAN, RH
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1976, 59 : S19 - S19
  • [34] A robust preconditioner for fluid-structure interaction problems
    Washio, T
    Hisada, T
    Watanabe, H
    Tezduyar, TE
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (39-41) : 4027 - 4047
  • [35] A particle model for fluid-structure interaction
    Cottet, GH
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (10) : 833 - 838
  • [36] An improved SPH-FEM coupling approach for modeling fluid-structure interaction problems
    Yao, Xuehao
    Zhang, Xuming
    Huang, Dan
    COMPUTATIONAL PARTICLE MECHANICS, 2023, 10 (02) : 313 - 330
  • [37] Implicit fluid-structure coupling for simulation of cardiovascular problems
    Penrose, JMT
    Staples, CJ
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 40 (3-4) : 467 - 478
  • [38] Coupling of SPH with smoothed point interpolation method for violent fluid-structure interaction problems
    Zhang, Guiyong
    Wang, Shuangqiang
    Sui, Zhixiang
    Sun, Lei
    Zhang, Zhiqian
    Zong, Zhi
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 103 : 1 - 10
  • [39] Analysis and Acceleration of a Fluid-Structure Interaction Coupling Scheme
    Doerfel, Michael R.
    Simeon, Bernd
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 307 - 315
  • [40] FLUID-STRUCTURE INTERACTION BASED ON HPC MULTICODE COUPLING
    Cajas, J. C.
    Houzeaux, G.
    Vazquez, M.
    Garcia, M.
    Casoni, E.
    Calmet, H.
    Artigues, A.
    Borrell, R.
    Lehmkuhl, O.
    Pastrana, D.
    Yanez, D. J.
    Pons, R.
    Martorell, J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : C677 - C703