Triggering and Monitoring Plasmon-Enhanced Reactions by Optical Nanoantennas Coupled to Photocatalytic Beads

被引:56
|
作者
Salmistraro, Marco [1 ,2 ]
Schwartzberg, Adam [3 ]
Bao, Wei [3 ]
Depero, Laura E. [1 ,2 ]
Weber-Bargioni, Alexander [3 ]
Cabrini, Stefano [3 ]
Alessandri, Ivano [1 ,2 ]
机构
[1] Univ Brescia, INSTM, I-25123 Brescia, Italy
[2] Univ Brescia, Chem Technol Lab, I-25123 Brescia, Italy
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
关键词
nanoantennas; nanofabrication; photocatalysis; SERS; core; shell materials; GOLD NANOPARTICLES; VISIBLE-LIGHT; SOLAR; NANOSTRUCTURES; SPECTROSCOPY; CONVERSION; NANORODS; ENERGY; OXIDE; SIZE;
D O I
10.1002/smll.201300211
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic metal/semiconductor nanocomposites promise to be a breakthrough for boosting and investigating photon-assisted processes at the nanoscale, with exciting perspectives for energy conversion and catalysis. However, the efficiency and selectivity of these surface processes are still far from being controlled. Here, shown for the first time, is a new class of photocatalyst which is based on the synergistic combination of bowtie-like gold nanoantennas and SiO2/TiO2 core/shell oxide beads. These systems are exploited as efficient near-field optical light concentrators, stimulating photon-driven processes at the metal-semiconductor interface. Extraordinary enhancements of photodegradation rates (minutes instead of hours) result from matching the nanoantenna surface plasmon resonance with the optical absorption of organic dyes and the excitation source wavelength. Moreover, strong Raman enhancements are observed allowing for direct in-situ monitoring of reaction progress of different analytes on the same site.
引用
收藏
页码:3301 / 3307
页数:7
相关论文
共 50 条
  • [11] PRECISE FABRICATION OF GAP-TUNABLE NANOANTENNAS FOR PLASMON-ENHANCED SPECTROSCOPY AND BIOSENSING
    Huang, Yun
    Chen, Zhuojie
    Jin, Shengxiao
    Zhu, Jia
    Yu, Bocheng
    Wu, Wengang
    Zhu, Rui
    Xu, Jun
    2020 33RD IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2020), 2020, : 1179 - 1182
  • [12] Plasmon-enhanced photocatalytic properties of Au/ZnO nanowires
    Li, Haolin
    Ding, Jianwei
    Cai, Shuangfei
    Zhang, Wei
    Zhang, Xining
    Wu, Ting
    Wang, Chen
    Foss, Morten
    Yang, Rong
    APPLIED SURFACE SCIENCE, 2022, 583
  • [13] Subnanometric stabilization of plasmon-enhanced optical microscopy
    Yano, Taka-aki
    Ichimura, Taro
    Kuwahara, Shota
    Verma, Prabhat
    Kawata, Satoshi
    NANOTECHNOLOGY, 2012, 23 (20)
  • [14] Quasistatic limit for plasmon-enhanced optical chirality
    Finazzi, Marco
    Biagioni, Paolo
    Celebrano, Michele
    Duo, Lamberto
    PHYSICAL REVIEW B, 2015, 91 (19)
  • [15] Plasmon-Enhanced Metasurfaces for Controlling Optical Polarization
    Alali, Fatema
    Kim, Young Hwa
    Baev, Alexander
    Furlani, Edward P.
    ACS PHOTONICS, 2014, 1 (06): : 507 - 515
  • [16] Plasmon-enhanced optical nonlinearity in graphene nanomeshes
    Karimi, F.
    Mitra, S.
    Soleimanikahnoj, S.
    Knezevic, I
    PHYSICAL REVIEW B, 2023, 108 (03)
  • [17] Plasmon-Enhanced Photocatalytic Activity of Iron Oxide on Gold Nanopillars
    Gao, Hanwei
    Liu, Chong
    Jeong, Hoon Eui
    Yang, Peidong
    ACS NANO, 2012, 6 (01) : 234 - 240
  • [18] Hydrogenation and plasmon-enhanced photocatalytic activity of rhenium oxide nanosheets
    Liu, Jia
    Ma, Song
    Chen, Kai
    Wang, Wei
    Wang, Peng-Fei
    Zhou, Li
    Wang, Qu-Quan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 855
  • [19] Plasmon-enhanced optical trapping of individual metal nanorods
    Pelton, Matthew
    Liu, Mingzhao
    Toussaint, Kimani C., Jr.
    Kim, Hee Y.
    Smith, Glenna
    Pesic, Jelena
    Guyot-Sionnest, Philippe
    Scherer, Norbert F.
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION IV, 2007, 6644
  • [20] Plasmon-enhanced optical transmission of nanostructured metallic multilayers
    Blaikie, Richard J.
    Lin, Ling
    Reeves, Roger J.
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2009, 6 (3-4) : 222 - 232