Triggering and Monitoring Plasmon-Enhanced Reactions by Optical Nanoantennas Coupled to Photocatalytic Beads

被引:56
|
作者
Salmistraro, Marco [1 ,2 ]
Schwartzberg, Adam [3 ]
Bao, Wei [3 ]
Depero, Laura E. [1 ,2 ]
Weber-Bargioni, Alexander [3 ]
Cabrini, Stefano [3 ]
Alessandri, Ivano [1 ,2 ]
机构
[1] Univ Brescia, INSTM, I-25123 Brescia, Italy
[2] Univ Brescia, Chem Technol Lab, I-25123 Brescia, Italy
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
关键词
nanoantennas; nanofabrication; photocatalysis; SERS; core; shell materials; GOLD NANOPARTICLES; VISIBLE-LIGHT; SOLAR; NANOSTRUCTURES; SPECTROSCOPY; CONVERSION; NANORODS; ENERGY; OXIDE; SIZE;
D O I
10.1002/smll.201300211
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic metal/semiconductor nanocomposites promise to be a breakthrough for boosting and investigating photon-assisted processes at the nanoscale, with exciting perspectives for energy conversion and catalysis. However, the efficiency and selectivity of these surface processes are still far from being controlled. Here, shown for the first time, is a new class of photocatalyst which is based on the synergistic combination of bowtie-like gold nanoantennas and SiO2/TiO2 core/shell oxide beads. These systems are exploited as efficient near-field optical light concentrators, stimulating photon-driven processes at the metal-semiconductor interface. Extraordinary enhancements of photodegradation rates (minutes instead of hours) result from matching the nanoantenna surface plasmon resonance with the optical absorption of organic dyes and the excitation source wavelength. Moreover, strong Raman enhancements are observed allowing for direct in-situ monitoring of reaction progress of different analytes on the same site.
引用
收藏
页码:3301 / 3307
页数:7
相关论文
共 50 条
  • [1] Al nanoantennas for plasmon-enhanced infrared spectroscopy
    Chen, Kai
    PLASMONICS III, 2018, 10824
  • [2] An overview on plasmon-enhanced photoluminescence via metallic nanoantennas
    Montano-Priede, Jose Luis
    Zapata-Herrera, Mario
    Esteban, Ruben
    Zabala, Nerea
    Aizpurua, Javier
    NANOPHOTONICS, 2024, 13 (26) : 4771 - 4794
  • [3] Plasmon-enhanced chemical reactions
    Xiao, Manda
    Jiang, Ruibin
    Wang, Feng
    Fang, Caihong
    Wang, Jianfang
    Yu, Jimmy C.
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (19) : 5790 - 5805
  • [4] Plasmon-enhanced photocatalytic water purification
    Gomez, Leyre
    Sebastian, Victor
    Arruebo, Manuel
    Santamaria, Jesus
    Cronin, Stephen B.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (29) : 15111 - 15116
  • [5] Surface plasmon-enhanced photochemical reactions
    Ueno, Kosei
    Misawa, Hiroaki
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2013, 15 : 31 - 52
  • [6] Plasmon-enhanced single photon source directly coupled to an optical fiber
    Sugawara, Masakazu
    Xuan, Yining
    Mitsumori, Yasuyoshi
    Edamatsu, Keiichi
    Sadgrove, Mark
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [7] Germanium Nanoantennas for Plasmon-Enhanced Third Harmonic Generation in the Mid Infrared
    Fischer, Marco P.
    Riede, Aaron
    Grupp, Alexander
    Gallacher, Kevin
    Frigerio, Jacopo
    Pellegrini, Giovanni
    Ortolani, Michele
    Paul, Douglas J.
    Isella, Giovanni
    Leitenstorfer, Alfred
    Biagioni, Paolo
    Brida, Daniele
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [8] Photocatalytic Plasmon-Enhanced Nitrogen Reduction to Ammonia
    Monyoncho, Evans A.
    Dasog, Mita
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (03):
  • [9] Optical tuning of plasmon-enhanced photoluminescence
    Wang, Yunxia
    Ding, Tao
    NANOSCALE, 2019, 11 (22) : 10589 - 10594
  • [10] Plasmon-enhanced optical sensors: a review
    Li, Ming
    Cushing, Scott K.
    Wu, Nianqiang
    ANALYST, 2015, 140 (02) : 386 - 406