A hybrid of adaptive neuro-fuzzy inference system and genetic algorithm

被引:21
|
作者
Varnamkhasti, M. Jalali [1 ]
Hassan, Nasruddin [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, DE, Malaysia
关键词
Adaptive neuro-fuzzy inference system; genetic algorithm; sexual selection;
D O I
10.3233/IFS-120685
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Premature convergence is an important problem in evolutionary algorithms, in particular genetic algorithm. The diversity of the population is a very influential parameter on premature convergence in genetic algorithm. In this paper, we attempt to improve the performance of genetic algorithms by providing a bi-linear allocation lifetime approach to label the chromosomes based on their fitness values. These lables applied within a set of fuzzy rules and adaptive neuro-fuzzy inference system genetic algorithm to select suitable sexual chromosomes for recombination. We have evaluated the proposed technique on several numerical functions by comparing its performance to the basic genetic algorithm. The results of our initial experiments demonstrate a clear advantage of the adaptive neuro-fuzzy inference system genetic algorithm over the other techniques.
引用
收藏
页码:793 / 796
页数:4
相关论文
共 50 条
  • [31] Fuzzy nonparametric regression based on an adaptive neuro-fuzzy inference system
    Danesh, Sedigheh
    Farnoosh, Rahman
    Razzaghnia, Tahereh
    [J]. NEUROCOMPUTING, 2016, 173 : 1450 - 1460
  • [32] Neuro-Fuzzy Evaluation of the Software Reliability Models by Adaptive Neuro Fuzzy Inference System
    Milos Milovancevic
    Aleksandar Dimov
    Kamen Boyanov Spasov
    Ljubomir Vračar
    Miroslav Planić
    [J]. Journal of Electronic Testing, 2021, 37 : 439 - 452
  • [33] Estimation of the Elemental Composition of Biomass Using Hybrid Adaptive Neuro-Fuzzy Inference System
    Obafemi O. Olatunji
    Stephen Akinlabi
    Nkosinathi Madushele
    Paul A. Adedeji
    [J]. BioEnergy Research, 2019, 12 : 642 - 652
  • [34] Estimation of the Elemental Composition of Biomass Using Hybrid Adaptive Neuro-Fuzzy Inference System
    Olatunji, Obafemi O.
    Akinlabi, Stephen
    Madushele, Nkosinathi
    Adedeji, Paul A.
    [J]. BIOENERGY RESEARCH, 2019, 12 (03) : 642 - 652
  • [35] A Hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) Approach for Professional Bloggers Classification
    Asim, Yousra
    Raza, Basit
    Malik, Ahmad Kamran
    Shahid, Ahmad R.
    Faheem, Muhammad
    Kumar, Yogan Jaya
    [J]. 2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 88 - 93
  • [36] Neuro-Fuzzy Evaluation of the Software Reliability Models by Adaptive Neuro Fuzzy Inference System
    Milovancevic, Milos
    Dimov, Aleksandar
    Spasov, Kamen Boyanov
    Vracar, Ljubomir
    Planic, Miroslav
    [J]. JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2021, 37 (04): : 439 - 452
  • [37] Evolutionary algorithm in adaptive neuro-fuzzy inference system for modeling growth of foodborne fungi
    Chen, Yenming J.
    Ho, Wen-Hsien
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (02) : 1033 - 1039
  • [38] Adaptive Neuro-Fuzzy Inference System in Fuzzy Measurement to Track Association
    Tafti, Abdolreza Dehghani
    Sadati, Nasser
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2010, 132 (02): : 1 - 8
  • [39] Modelling and control of a flexible structure using adaptive neuro-fuzzy inference system algorithm
    Darus, IZM
    Tokhi, MO
    Hashim, SZM
    [J]. ICM '04: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS 2004, 2004, : 159 - 164
  • [40] The use of improved algorithm of adaptive neuro-fuzzy inference system in optimization of machining parameters
    Chen, Ying
    Qi, Pengyuan
    Liu, Songqing
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (04) : 3755 - 3764