A hybrid of adaptive neuro-fuzzy inference system and genetic algorithm

被引:21
|
作者
Varnamkhasti, M. Jalali [1 ]
Hassan, Nasruddin [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, DE, Malaysia
关键词
Adaptive neuro-fuzzy inference system; genetic algorithm; sexual selection;
D O I
10.3233/IFS-120685
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Premature convergence is an important problem in evolutionary algorithms, in particular genetic algorithm. The diversity of the population is a very influential parameter on premature convergence in genetic algorithm. In this paper, we attempt to improve the performance of genetic algorithms by providing a bi-linear allocation lifetime approach to label the chromosomes based on their fitness values. These lables applied within a set of fuzzy rules and adaptive neuro-fuzzy inference system genetic algorithm to select suitable sexual chromosomes for recombination. We have evaluated the proposed technique on several numerical functions by comparing its performance to the basic genetic algorithm. The results of our initial experiments demonstrate a clear advantage of the adaptive neuro-fuzzy inference system genetic algorithm over the other techniques.
引用
收藏
页码:793 / 796
页数:4
相关论文
共 50 条
  • [1] Optimization of EPB Shield Performance with Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm
    Elbaz, Khalid
    Shen, Shui-Long
    Zhou, Annan
    Yuan, Da-Jun
    Xu, Ye-Shuang
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (04):
  • [2] Twitter sentiment analysis using adaptive neuro-fuzzy inference system with genetic algorithm
    Padmaja, K.
    Hegde, Nagaratna P.
    [J]. PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), 2019, : 498 - 503
  • [3] Prediction of falling weight deflectometer parameters using hybrid model of genetic algorithm and adaptive neuro-fuzzy inference system
    Long Hoang Nguyen
    Dung Quang Vu
    Duc Dam Nguyen
    Fazal E. Jalal
    Mudassir Iqbal
    Vinh The Dang
    Hiep Van Le
    Indra Prakash
    Binh Thai Pham
    [J]. Frontiers of Structural and Civil Engineering, 2023, 17 : 812 - 826
  • [4] Forecasting Copper Prices Using Hybrid Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms
    Alameer, Zakaria
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    Ye, Haiwang
    Zhang Jianhua
    [J]. NATURAL RESOURCES RESEARCH, 2019, 28 (04) : 1385 - 1401
  • [5] Forecasting Copper Prices Using Hybrid Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms
    Zakaria Alameer
    Mohamed Abd Elaziz
    Ahmed A. Ewees
    Haiwang Ye
    Zhang Jianhua
    [J]. Natural Resources Research, 2019, 28 : 1385 - 1401
  • [6] A Novel Optimization Algorithm: Cascaded Adaptive Neuro-Fuzzy Inference System
    Rathnayake, Namal
    Dang, Tuan Linh
    Hoshino, Yukinobu
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2021, 23 (07) : 1955 - 1971
  • [7] Improved adaptive neuro-fuzzy inference system
    Benmiloud, Tarek
    [J]. NEURAL COMPUTING & APPLICATIONS, 2012, 21 (03): : 575 - 582
  • [8] Prediction of falling weight deflectometer parameters using hybrid model of genetic algorithm and adaptive neuro-fuzzy inference system
    Nguyen, Long Hoang
    Vu, Dung Quang
    Nguyen, Duc Dam
    Jalal, Fazal E.
    Iqbal, Mudassir
    Dang, Vinh The
    Le, Hiep Van
    Prakash, Indra
    Pham, Binh Thai
    [J]. FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2023, 17 (05) : 812 - 826
  • [9] A Novel Optimization Algorithm: Cascaded Adaptive Neuro-Fuzzy Inference System
    Namal Rathnayake
    Tuan Linh Dang
    Yukinobu Hoshino
    [J]. International Journal of Fuzzy Systems, 2021, 23 : 1955 - 1971
  • [10] Multioutput Adaptive Neuro-fuzzy Inference System
    Benmiloud, T.
    [J]. RECENT ADVANCES IN NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING, 2010, : 94 - 98