Spectral properties of the discrete random displacement model

被引:1
|
作者
Nichols, Roger [1 ]
Stolz, Guenter [2 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
关键词
Random operators; random displacement model; integrated density of states;
D O I
10.4171/JST/6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate spectral properties of a discrete random displacement model, a Schrodinger operator on l(2)(Z(d)) with potential generated by randomly displacing finitely supported single-site terms from the points of a sublattice of Z(d). In particular, we characterize the upper and lower edges of the almost sure spectrum. For a one-dimensional model with Bernoulli distributed displacements, we can show that the integrated density of states has a 1/log(2)-singularity at external as well as internal band edges.
引用
收藏
页码:123 / 153
页数:31
相关论文
共 50 条
  • [41] Spectral and localization properties of random bipartite graphs
    Martínez-Martínez C.T.
    Méndez-Bermúdez J.A.
    Moreno Y.
    Pineda-Pineda J.J.
    Sigarreta J.M.
    Chaos, Solitons and Fractals: X, 2019, 3
  • [42] On spectral and numerical properties of random butterfly matrices
    Trogdon, Thomas
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 48 - 58
  • [43] SOME SPECTRAL PROPERTIES OF RANDOM ARRAYS OF GRAINS
    MARTIN, F
    AIME, C
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (12) : 1782 - 1785
  • [44] Spectral Properties of Random and Deterministic CMV Matrices
    Stoiciu, M.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2014, 9 (05) : 270 - 281
  • [45] Iterated random pulse processes and their spectral properties
    Veneziano, D
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (01) : 1 - 11
  • [46] Spectral and structural properties of random interdependent networks
    Shahrivar, Ebrahim Moradi
    Pirani, Mohammad
    Sundaram, Shreyas
    AUTOMATICA, 2017, 83 : 234 - 242
  • [47] SPECTRAL PROPERTIES OF THE LAPLACIAN AND RANDOM MATRIX THEORIES
    BOHIGAS, O
    GIANNONI, MJ
    SCHMIT, C
    JOURNAL DE PHYSIQUE LETTRES, 1984, 45 (21): : 1015 - 1022
  • [48] Universality in the spectral and eigenfunction properties of random networks
    Mendez-Bermudez, J. A.
    Alcazar-Lopez, A.
    Martinez-Mendoza, A. J.
    Rodrigues, Francisco A.
    Peron, Thomas K. D. M.
    PHYSICAL REVIEW E, 2015, 91 (03)
  • [49] Spectral Analysis of the Quantum Random Energy Model
    Chokri Manai
    Simone Warzel
    Communications in Mathematical Physics, 2023, 402 : 1259 - 1306
  • [50] Spectral Analysis of the Quantum Random Energy Model
    Manai, Chokri
    Warzel, Simone
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (2) : 1259 - 1306