Spectral properties of the discrete random displacement model

被引:1
|
作者
Nichols, Roger [1 ]
Stolz, Guenter [2 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
关键词
Random operators; random displacement model; integrated density of states;
D O I
10.4171/JST/6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate spectral properties of a discrete random displacement model, a Schrodinger operator on l(2)(Z(d)) with potential generated by randomly displacing finitely supported single-site terms from the points of a sublattice of Z(d). In particular, we characterize the upper and lower edges of the almost sure spectrum. For a one-dimensional model with Bernoulli distributed displacements, we can show that the integrated density of states has a 1/log(2)-singularity at external as well as internal band edges.
引用
收藏
页码:123 / 153
页数:31
相关论文
共 50 条
  • [1] Low energy properties of the random displacement model
    Baker, Jeff
    Loss, Michael
    Stolz, Guenter
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (08) : 2725 - 2740
  • [2] The spectral minimum for random displacement models
    Lott, J
    Stolz, G
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (01) : 133 - 146
  • [3] Spectral Properties of Random Matrices for Stochastic Block Model
    Avrachenkov, Konstantin
    Cottatellucci, Laura
    Kadavankandy, Arun
    2015 13TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), 2015, : 537 - 544
  • [4] Spectral properties of the Mobius function and a random Mobius model
    El Abdalaoui, E. H.
    Disertori, M.
    STOCHASTICS AND DYNAMICS, 2016, 16 (01)
  • [5] LOCALIZATION FOR THE RANDOM DISPLACEMENT MODEL
    Klopp, Frederic
    Loss, Michael
    Nakamura, Shu
    Stolz, Guenter
    DUKE MATHEMATICAL JOURNAL, 2012, 161 (04) : 587 - 621
  • [6] LOCALIZATION FOR THE RANDOM DISPLACEMENT MODEL
    Loss, Michael
    Stolz, Guenter
    MATHEMATICAL RESULTS IN QUANTUM PHYSICS, 2011, : 169 - 175
  • [7] RANDOM WALK ON RANDOM PLANAR MAPS: SPECTRAL DIMENSION, RESISTANCE AND DISPLACEMENT
    Gwynne, Ewain
    Miller, Jason
    ANNALS OF PROBABILITY, 2021, 49 (03): : 1097 - 1128
  • [8] DISCRETE PROPERTIES OF RANDOM SURFACES
    WHITEHOUSE, DJ
    PHILLIPS, MJ
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 290 (1369): : 267 - 298
  • [9] Spectral density of random graphs: convergence properties and application in model fitting
    Santos, Suzana de Siqueira
    Fujita, Andre
    Matias, Catherine
    JOURNAL OF COMPLEX NETWORKS, 2021, 9 (06)
  • [10] Ramsey Properties of Random Discrete Structures
    Friedgut, Ehud
    Roedl, Vojtech
    Schacht, Mathias
    RANDOM STRUCTURES & ALGORITHMS, 2010, 37 (04) : 407 - 436