An efficient streaming algorithm for spectral proper orthogonal decomposition

被引:39
|
作者
Schmidt, Oliver T. [1 ]
Towne, Aaron [2 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
Proper orthogonal decomposition; Principal component analysis; Spectral analysis; DYNAMIC-MODE DECOMPOSITION; COHERENT STRUCTURES;
D O I
10.1016/j.cpc.2018.11.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A streaming algorithm to compute the spectral proper orthogonal decomposition (SPOD) of stationary random processes is presented. As new data becomes available, an incremental update of the truncated eigenbasis of the estimated cross-spectral density (CSD) matrix is performed. The algorithm requires access to only one temporal snapshot of the data at a time and converges orthogonal sets of SPOD modes at discrete frequencies that are optimally ranked in terms of energy. We define measures of error and convergence, and demonstrate the algorithm's performance on two datasets. The first example considers a high-fidelity numerical simulation of a turbulent jet, and the second example uses optical flow data obtained from high-speed camera recordings of a stepped spillway experiment. For both cases, the most energetic SPOD modes are reliably converged. The algorithm's low memory requirement enables real-time deployment and allows for the convergence of second-order statistics from arbitrarily long streams of data. A MATLAB implementation of the algorithm along with a test database for the jet example, can be found in the Supplementary material. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 109
页数:12
相关论文
共 50 条
  • [41] A Randomized Proper Orthogonal Decomposition Technique
    Yu, Dan
    Chakravorty, Suman
    [J]. 2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 1137 - 1142
  • [42] Artificial viscosity proper orthogonal decomposition
    Borggaard, Jeff
    Iliescu, Traian
    Wang, Zhu
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (1-2) : 269 - 279
  • [43] HIERARCHICAL APPROXIMATE PROPER ORTHOGONAL DECOMPOSITION
    Himpe, Christian
    Leibner, Tobias
    Rave, Stephan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : A3267 - A3292
  • [44] Proper orthogonal decomposition for optimality systems
    Kunisch, Karl
    Volkwein, Stefan
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (01): : 1 - 23
  • [45] Proper orthogonal decomposition and its applications
    Sanghi, Sanjeev
    Hasan, Nadeem
    [J]. ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2011, 6 (01) : 120 - 128
  • [46] Aeroservoelastic modeling with proper orthogonal decomposition
    Carlson, Henry A.
    Verberg, Rolf
    Harris, Charles A.
    [J]. PHYSICS OF FLUIDS, 2017, 29 (02)
  • [47] PROPER ORTHOGONAL DECOMPOSITION OF ROOF PRESSURE
    BIENKIEWICZ, B
    HAM, HJ
    SUN, Y
    [J]. JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1993, 50 (1-3) : 193 - 202
  • [48] Proper orthogonal decomposition of DLA clusters
    Elezgaray, J
    Tallet, F
    [J]. EUROPHYSICS LETTERS, 1996, 36 (07): : 521 - 526
  • [49] PRESERVING SYMMETRIES IN THE PROPER ORTHOGONAL DECOMPOSITION
    AUBRY, N
    LIAN, WY
    TITI, ES
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (02): : 483 - 505
  • [50] A new look at proper orthogonal decomposition
    Rathinam, M
    Petzold, LR
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (05) : 1893 - 1925