Does Deep Learning-Based Super-Resolution Help Humans With Face Recognition?

被引:0
|
作者
Velan, Erik [1 ]
Fontani, Marco [1 ]
Carrato, Sergio [2 ]
Jerian, Martino [1 ]
机构
[1] Amped Software, Trieste, Italy
[2] Univ Trieste, Dept Engn & Architecture, Trieste, Italy
来源
关键词
super-resolution; deep learning; face identification; face recognition; face enhancement; AI; IMAGE QUALITY ASSESSMENT; RESOLUTION;
D O I
10.3389/frsip.2022.854737
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The last decade witnessed a renaissance of machine learning for image processing. Super-resolution (SR) is one of the areas where deep learning techniques have achieved impressive results, with a specific focus on the SR of facial images. Examining and comparing facial images is one of the critical activities in forensic video analysis; a compelling question is thus whether recent SR techniques could help face recognition (FR) made by a human operator, especially in the challenging scenario where very low resolution images are available, which is typical of surveillance recordings. This paper addresses such a question through a simple yet insightful experiment: we used two state-of-the-art deep learning-based SR algorithms to enhance some very low-resolution faces of 30 worldwide celebrities. We then asked a heterogeneous group of more than 130 individuals to recognize them and compared the recognition accuracy against the one achieved by presenting a simple bicubic-interpolated version of the same faces. Results are somehow surprising: despite an undisputed general superiority of SR-enhanced images in terms of visual appearance, SR techniques brought no considerable advantage in overall recognition accuracy.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Performance Analysis of JPEG XR with Deep Learning-Based Image Super-Resolution
    Min, Taingliv
    Aramvith, Supavadee
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1192 - 1197
  • [32] Deep learning-based super-resolution for GF-4 satellite imagery
    He Z.
    He D.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (12): : 1500 - 1510
  • [33] Deep Learning-Based Blind Image Super-Resolution using Iterative Networks
    Yaar, Asfand
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [34] A Systematic Survey of Deep Learning-Based Single-Image Super-Resolution
    Li, Juncheng
    Pei, Zehua
    Li, Wenjie
    Gao, Guangwei
    Wang, Longguang
    Wang, Yingqian
    Zeng, Tieyong
    ACM COMPUTING SURVEYS, 2024, 56 (10)
  • [35] Deep Learning-Based Single-Image Super-Resolution: A Comprehensive Review
    Chauhan, Karansingh
    Patel, Shail Nimish
    Kumhar, Malaram
    Bhatia, Jitendra
    Tanwar, Sudeep
    Davidson, Innocent Ewean
    Mazibuko, Thokozile F. F.
    Sharma, Ravi
    IEEE ACCESS, 2023, 11 : 21811 - 21830
  • [36] Deep learning-based super-resolution acoustic holography for phased transducer array
    Lu, Qingyi
    Zhong, Chengxi
    Liu, Qing
    Su, Hu
    Liu, Song
    Journal of Applied Physics, 2024, 136 (13)
  • [37] ITERATIVE KERNEL RECONSTRUCTION FOR DEEP LEARNING-BASED BLIND IMAGE SUPER-RESOLUTION
    Yildirim, Suleyman
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3251 - 3255
  • [38] Visual and quantitative evaluation of microcalcifications in mammograms with deep learning-based super-resolution
    Honjo, Takashi
    Ueda, Daiju
    Katayama, Yutaka
    Shimazaki, Akitoshi
    Jogo, Atsushi
    Kageyama, Ken
    Murai, Kazuki
    Tatekawa, Hiroyuki
    Fukumoto, Shinya
    Yamamoto, Akira
    Miki, Yukio
    EUROPEAN JOURNAL OF RADIOLOGY, 2022, 154
  • [39] Deep learning-based image super-resolution considering quantitative and perceptual quality
    Choi, Jun-Ho
    Kim, Jun-Hyuk
    Cheon, Manri
    Lee, Jong-Seok
    NEUROCOMPUTING, 2020, 398 (398) : 347 - 359
  • [40] Applications of Deep Learning-Based Super-Resolution for Sea Surface Temperature Reconstruction
    Ping, Bo
    Su, Fenzhen
    Han, Xingxing
    Meng, Yunshan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 887 - 896