Does Deep Learning-Based Super-Resolution Help Humans With Face Recognition?

被引:0
|
作者
Velan, Erik [1 ]
Fontani, Marco [1 ]
Carrato, Sergio [2 ]
Jerian, Martino [1 ]
机构
[1] Amped Software, Trieste, Italy
[2] Univ Trieste, Dept Engn & Architecture, Trieste, Italy
来源
关键词
super-resolution; deep learning; face identification; face recognition; face enhancement; AI; IMAGE QUALITY ASSESSMENT; RESOLUTION;
D O I
10.3389/frsip.2022.854737
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The last decade witnessed a renaissance of machine learning for image processing. Super-resolution (SR) is one of the areas where deep learning techniques have achieved impressive results, with a specific focus on the SR of facial images. Examining and comparing facial images is one of the critical activities in forensic video analysis; a compelling question is thus whether recent SR techniques could help face recognition (FR) made by a human operator, especially in the challenging scenario where very low resolution images are available, which is typical of surveillance recordings. This paper addresses such a question through a simple yet insightful experiment: we used two state-of-the-art deep learning-based SR algorithms to enhance some very low-resolution faces of 30 worldwide celebrities. We then asked a heterogeneous group of more than 130 individuals to recognize them and compared the recognition accuracy against the one achieved by presenting a simple bicubic-interpolated version of the same faces. Results are somehow surprising: despite an undisputed general superiority of SR-enhanced images in terms of visual appearance, SR techniques brought no considerable advantage in overall recognition accuracy.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Deep Learning-based Face Super-resolution: A Survey
    Jiang, Junjun
    Wang, Chenyang
    Liu, Xianming
    Ma, Jiayi
    ACM COMPUTING SURVEYS, 2023, 55 (01)
  • [2] Deep learning-based super-resolution in coherent imaging systems
    Liu, Tairan
    de Haan, Kevin
    Rivenson, Yair
    Wei, Zhensong
    Zeng, Xin
    Zhang, Yibo
    Ozcan, Aydogan
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [3] Volumetric Isosurface Rendering with Deep Learning-Based Super-Resolution
    Weiss, Sebastian
    Chu, Mengyu
    Thuerey, Nils
    Westermann, Rudiger
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (06) : 3064 - 3078
  • [4] Deep learning-based super-resolution in coherent imaging systems
    Tairan Liu
    Kevin de Haan
    Yair Rivenson
    Zhensong Wei
    Xin Zeng
    Yibo Zhang
    Aydogan Ozcan
    Scientific Reports, 9
  • [5] A learning-based POCS algorithm for face image super-resolution reconstruction
    Huang, H
    Fan, X
    Qi, C
    Zhu, SH
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 5071 - 5076
  • [6] Learning-based super-resolution of 3d face model
    Peng, SQ
    Pan, G
    Wu, Z
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1853 - 1856
  • [7] Deep Learning based Super-Resolution for Improved Action Recognition
    Nasrollahi, K.
    Escalera, S.
    Rasti, P.
    Anbarjafari, G.
    Baro, X.
    Escalante, H. J.
    Moeslund, T. B.
    5TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, THEORY, TOOLS AND APPLICATIONS 2015, 2015, : 67 - 72
  • [8] A general residue compensation framework of learning-based face super-resolution
    Ma, Xiang
    Li, Wenmin
    Xu, Hao
    Yang, Xiaojun
    Song, Huansheng
    Ma, X. (maxiangmail@163.com), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09): : 4049 - 4056
  • [9] ROBUST LEARNING-BASED SUPER-RESOLUTION
    Kim, Changhyun
    Choi, Kyuha
    Lee, Ho-young
    Hwang, Kyuyoung
    Ra, Jong Beom
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 2017 - 2020
  • [10] Limitations of Learning-Based Super-Resolution
    Shoji, Hiroki
    Gohshi, Seiichi
    2015 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2015, : 646 - 651