Nitrate boosts anaerobic ethanol production in an acetate-dependent manner in the yeast Dekkera bruxellensis

被引:13
|
作者
Pena-Moreno, Irina Charlot [1 ]
Parente, Denise Castro [1 ]
da Silva, Jackeline Maria [1 ]
Mendonca, Allyson Andrade [1 ]
Valcarcel Rojas, Lino Angel [3 ]
de Morais Junior, Marcos Antonio [1 ]
Pita, Will de Barros [2 ,4 ]
机构
[1] Univ Fed Pernambuco, Dept Genet, BR-50760901 Recife, PE, Brazil
[2] Univ Fed Pernambuco, Dept Antibiot, BR-50760901 Recife, PE, Brazil
[3] Univ Fed Pernambuco, Dept Nucl Energy, BR-50760901 Recife, PE, Brazil
[4] Univ Fed Pernambuco, Dept Antibiot, Ave Prof Artur da Sa, BR-50740520 Recife, PE, Brazil
关键词
Ethanol; Acetate metabolism; Anaerobic growth; Energetic demand; Nitrogen catabolite repression; MAJOR CONTAMINANT; FERMENTATION; GROWTH; PHYSIOLOGY; CEREVISIAE; SUGARCANE; CULTURES; ABILITY; TOOL; PH;
D O I
10.1007/s10295-018-2118-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In the past few years, the yeast Dekkera bruxellensis has gained much of attention among the so-called non-conventional yeasts for its potential in the biotechnological scenario, especially in fermentative processes. This yeast has been regarded as an important competitor to Saccharomyces cerevisiae in bioethanol production plants in Brazil and several studies have reported its capacity to produce ethanol. However, our current knowledge concerning D. bruxellensis is restricted to its aerobic metabolism, most likely because wine and beer strains cannot grow in full anaerobiosis. Hence, the present work aimed to fulfil a gap regarding the lack of information on the physiology of Dekkera bruxellensis growing in the complete absence of oxygen and the relationship with assimilation of nitrate as nitrogen source. The ethanol strain GDB 248 was fully capable of growing anaerobically and produces ethanol at the same level of S. cerevisiae. The presence of nitrate in the medium increased this capacity. Moreover, nitrate is consumed faster than ammonium and this increased rate coincided with a higher speed of glucose consumption. The profile of gene expression helped us to figure out that even in anaerobiosis, the presence of nitrate drives the yeast cells to an oxidative metabolism that ultimately incremented both biomass and ethanol production. These results finally provide the clues to explain most of the success of this yeast in industrial processes of ethanol production.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 48 条