Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach

被引:11
|
作者
Nademi, Arash [1 ]
Farnoosh, Rahman [2 ]
机构
[1] Islamic Azad Univ, Dept Stat, Sci & Res Branch, Tehran, Iran
[2] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
关键词
EM algorithm; geometric ergodicity; hidden variables; mixture models; semi-parametric autoregression; GEOMETRIC ERGODICITY; TIME-SERIES; ERRORS; REGRESSION;
D O I
10.1080/02664763.2013.839129
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose data generating structures which can be represented as a mixture of autoregressive-autoregressive conditionally heteroscedastic models. The switching between the states is governed by a hidden Markov chain. We investigate semi-parametric estimators for estimating the functions based on the quasi-maximum likelihood approach and provide sufficient conditions for geometric ergodicity of the process. We also present an expectation-maximization algorithm for calculating the estimates numerically.
引用
下载
收藏
页码:275 / 293
页数:19
相关论文
共 50 条