共 50 条
Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach
被引:11
|作者:
Nademi, Arash
[1
]
Farnoosh, Rahman
[2
]
机构:
[1] Islamic Azad Univ, Dept Stat, Sci & Res Branch, Tehran, Iran
[2] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
关键词:
EM algorithm;
geometric ergodicity;
hidden variables;
mixture models;
semi-parametric autoregression;
GEOMETRIC ERGODICITY;
TIME-SERIES;
ERRORS;
REGRESSION;
D O I:
10.1080/02664763.2013.839129
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We propose data generating structures which can be represented as a mixture of autoregressive-autoregressive conditionally heteroscedastic models. The switching between the states is governed by a hidden Markov chain. We investigate semi-parametric estimators for estimating the functions based on the quasi-maximum likelihood approach and provide sufficient conditions for geometric ergodicity of the process. We also present an expectation-maximization algorithm for calculating the estimates numerically.
引用
下载
收藏
页码:275 / 293
页数:19
相关论文