Matching cutsets in graphs of diameter 2

被引:15
|
作者
Borowiecki, Mieuyslaw [1 ]
Jesse-Jozefczyk, Katarzyna [1 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, PL-65516 Zielona Gora, Poland
关键词
Matching cutset; Stable cutset; Graph algorithms;
D O I
10.1016/j.tcs.2008.07.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We say that a graph has a matching cutset if its vertices can be coloured in red and blue in such a way that there exists at least one vertex coloured in red and at least one vertex coloured in blue, and every vertex has at most one neighbour Coloured in the opposite colour. In this paper we study the algorithmic complexity of a problem of recognizing graphs which possess a matching cutset. In particular we present a polynomial-time algorithm which solves this problem for graphs of diameter two. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:574 / 582
页数:9
相关论文
共 50 条
  • [21] Distributed Exact Subgraph Matching in Small Diameter Dynamic Graphs
    Wickramaarachchi, Charith
    Kannan, Rajgopal
    Chelmis, Charalampos
    Prasanna, Viktor K.
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 3360 - 3369
  • [22] A complexity dichotomy for matching cut in (bipartite) graphs of fixed diameter
    Le, Hoang-Oanh
    Le, Van Bang
    THEORETICAL COMPUTER SCIENCE, 2019, 770 : 69 - 78
  • [23] ON 2-MATCHING COVERED GRAPHS AND 2-MATCHING DELETED GRAPHS
    Dai, Guowei
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (05) : 3667 - 3674
  • [24] GRAPHS OF DIAMETER AT MOST 2
    LAI, HJ
    ARS COMBINATORIA, 1992, 34 : 331 - 343
  • [25] CLASSIFICATION OF GRAPHS OF DIAMETER 2
    Fedoryaeva, T., I
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 502 - 512
  • [26] GRAPHS WITH DIAMETER-2
    BOLLOBAS, B
    ELDRIDGE, S
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 21 (03) : 201 - 205
  • [27] GEODETIC GRAPHS OF DIAMETER 2
    BLOKHUIS, A
    BROUWER, AE
    GEOMETRIAE DEDICATA, 1988, 25 (1-3) : 527 - 533
  • [28] GEODETIC GRAPHS OF DIAMETER 2
    ZELINKA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1975, 25 (01) : 148 - 153
  • [29] Induced subgraphs and tree decompositions VI. Graphs with 2-cutsets
    Abrishami, Tara
    Chudnovsky, Maria
    Hajebi, Sepehr
    Spirkl, Sophie
    DISCRETE MATHEMATICS, 2025, 348 (01)
  • [30] Isometric cycles, cutsets, and crowning of bridged graphs
    Jiang, T
    Kim, SJ
    West, DB
    JOURNAL OF GRAPH THEORY, 2003, 43 (03) : 161 - 170