On finite factorized groups with permutable subgroups of factors

被引:2
|
作者
Monakhov, Victor S. [1 ]
Trofimuk, Alexander A. [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math & Programming Technol, Gomel 246019, BELARUS
关键词
Mutually permutable subgroups; Sylow subgroups; msp-Permutable subgroups; Supersoluble groups;
D O I
10.1007/s00013-020-01535-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two subgroupsAandBof a group Gare called msp-permutable if the following statements hold:AB is a subgroup of G; the subgroupsPandQare mutually permutable, whereP is an arbitrary Sylowp-subgroup of AandQ is an arbitrary Sylowq-subgroup of B, p not equal q. In the present paper, we investigate groups that are factorized by two msp-permutable subgroups. In particular, the supersolubility of the product of two supersoluble msp-permutable subgroups is proved.
引用
收藏
页码:241 / 249
页数:9
相关论文
共 50 条
  • [31] Q-Permutable subgroups of finite groups
    Z. Pu
    L. Miao
    Ukrainian Mathematical Journal, 2012, 63 : 1745 - 1755
  • [32] On Finite Groups with Permutable Generalized Subnormal Subgroups
    Velesnitskii, V. F.
    Semenchuk, V. N.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 65 (11) : 1720 - 1724
  • [33] Q-Permutable subgroups of finite groups
    Pu, Z.
    Miao, L.
    UKRAINIAN MATHEMATICAL JOURNAL, 2012, 63 (11) : 1745 - 1755
  • [34] Sylow permutable subnormal subgroups of finite groups
    Ballester-Bolinches, A
    Esteban-Romero, R
    JOURNAL OF ALGEBRA, 2002, 251 (02) : 727 - 738
  • [35] On some permutable embeddings of subgroups of finite groups
    Ballester-Bolinches, Adolfo
    Beidleman, James C.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2017, 28 (02) : 339 - 347
  • [36] Finite Groups with Given Weakly σ-Permutable Subgroups
    C. Cao
    Z. Wu
    W. Guo
    Siberian Mathematical Journal, 2018, 59 : 157 - 165
  • [37] On π-S-permutable subgroups of finite groups
    A. Ballester-Bolinches
    Yangming Li
    Ning Su
    Zhuoqing Xie
    Mediterranean Journal of Mathematics, 2016, 13 : 93 - 99
  • [38] PERMUTABLE SUBGROUPS OF SOME FINITE PERMUTATION GROUPS
    STONEHEWER, SE
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1974, 28 (MAR) : 222 - 236
  • [39] Subnormal, permutable, and embedded subgroups in finite groups
    Beidleman, James C.
    Ragland, Mathew F.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (04): : 915 - 921
  • [40] On π-S-permutable subgroups of finite groups
    Ballester-Bolinches, A.
    Li, Yangming
    Su, Ning
    Xie, Zhuoqing
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) : 93 - 99