COMBINING GRADIENT-BASED OPTIMIZATION WITH STOCHASTIC SEARCH

被引:0
|
作者
Zhou, Enlu [1 ]
Hu, Jiaqiao [2 ]
机构
[1] Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a stochastic search algorithm for solving non-differentiable optimization problems. At each iteration, the algorithm searches the solution space by generating a population of candidate solutions from a parameterized sampling distribution. The basic idea is to convert the original optimization problem into a differentiable problem in terms of the parameters of the sampling distribution, and then use a quasi-Newton-like method on the reformulated problem to find improved sampling distributions. The algorithm combines the strength of stochastic search from considering a population of candidate solutions to explore the solution space with the rapid convergence behavior of gradient methods by exploiting local differentiable structures. We provide numerical examples to illustrate its performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Gradient-based simulation optimization
    Kim, Sujin
    PROCEEDINGS OF THE 2006 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2006, : 159 - 167
  • [22] Reliability-Based Design Optimization of Uncertain Stochastic Systems: Gradient-Based Scheme
    Jensen, H. A.
    Kusanovic, D. S.
    Valdebenito, M. A.
    Schueller, G. I.
    JOURNAL OF ENGINEERING MECHANICS, 2012, 138 (01) : 60 - 70
  • [23] Single-stage gradient-based stellarator coil design: stochastic optimization
    Wechsung, Florian
    Giuliani, Andrew
    Landreman, Matt
    Cerfon, Antoine
    Stadler, Georg
    NUCLEAR FUSION, 2022, 62 (07)
  • [24] Spherical search with epsilon constraint and gradient-based repair framework for constrained optimization
    Yang, Zhuji
    Kumar, Abhishek
    Mallipeddi, Rammohan
    Lee, Dong-Gyu
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 82
  • [25] A self-adaptive and gradient-based cuckoo search algorithm for global optimization
    She, Bin
    Fournier, Aime
    Yao, Mengjie
    Wang, Yaojun
    Hu, Guangmin
    APPLIED SOFT COMPUTING, 2022, 122
  • [26] Global Optimization by Equilibrium-Point Search of Gradient-Based Dynamical System
    Masuda, Kazuaki
    Kurihara, Kenzo
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2008, 91 (01) : 19 - 31
  • [27] OPTIMIZING CONDITIONAL VALUE-AT-RISK VIA GRADIENT-BASED ADAPTIVE STOCHASTIC SEARCH
    Zhu, Helin
    Hale, Joshua
    Zhou, Enlu
    2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 726 - 737
  • [28] A skeletonization algorithm for gradient-based optimization
    Menten, Martin J.
    Paetzold, Johannes C.
    Zimmer, Veronika A.
    Shit, Suprosanna
    Ezhov, Ivan
    Holland, Robbie
    Probst, Monika
    Schnabel, Julia A.
    Rueckert, Daniel
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21337 - 21346
  • [29] A new gradient-based search method: Grey-gradient search method
    Hong, CM
    Chen, CM
    Fan, HK
    MULTIPLE APPROACHES TO INTELLIGENT SYSTEMS, PROCEEDINGS, 1999, 1611 : 185 - 194
  • [30] Gradient-based optimization of spintronic devices
    Imai, Y.
    Liu, S.
    Akashi, N.
    Nakajima, K.
    APPLIED PHYSICS LETTERS, 2025, 126 (08)