Fedosov quantization on symplectic ringed spaces

被引:8
|
作者
Vaisman, I [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
D O I
10.1063/1.1427411
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We expose the basics of the Fedosov quantization procedure, placed in the general framework of symplectic ringed spaces. This framework also includes some Poisson manifolds with nonregular Poisson structures, presymplectic manifolds, complex analytic symplectic manifolds, etc. (C) 2002 American Institute of Physics.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 50 条
  • [21] Conformal Fedosov Structures and Spaces
    Almazbekov, Ch.
    Guseva, N. I.
    Mikes, J.
    [J]. MATHEMATICAL NOTES, 2023, 114 (5-6) : 1480 - 1483
  • [22] Wick type deformation quantization of Fedosov manifolds
    Dolgushev, VA
    Lyakhovich, SL
    Sharapov, AA
    [J]. NUCLEAR PHYSICS B, 2001, 606 (03) : 647 - 672
  • [23] THE SYMPLECTIC-GEOMETRY OF MODULI SPACES OF CONNECTIONS AND GEOMETRIC-QUANTIZATION
    HITCHIN, NJ
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1990, (102): : 159 - 174
  • [24] Fedosov's formal symplectic groupoids and contravariant connections
    Karabegov, Alexander V.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (10) : 1985 - 2009
  • [25] A ring-theorist's description of Fedosov quantization
    Farkas, DR
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2000, 51 (03) : 161 - 177
  • [26] W geometry from Fedosov's deformation quantization
    Castro, C
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2000, 33 (1-2) : 173 - 190
  • [27] On the Fedosov deformation quantization beyond the regular Poisson manifolds
    Dolgushev, VA
    Isaev, AP
    Lyakhovich, SL
    Sharapov, AA
    [J]. NUCLEAR PHYSICS B, 2002, 645 (03) : 457 - 476
  • [28] A Ring-Theorist's Description of Fedosov Quantization
    Daniel R. Farkas
    [J]. Letters in Mathematical Physics, 2000, 51 : 161 - 177
  • [29] On Fedosov's approach to deformation quantization with separation of variables
    Karabegov, AV
    [J]. CONFERENCE MOSHE FLATO 1999, VOL II: QUANTIZATION, DEFORMATIONS, AND SYMMETRIES, 2000, 22 : 167 - 176
  • [30] Quantization of symplectic cobordisms
    Korpás, L
    Uribe, A
    [J]. MATHEMATICAL RESEARCH LETTERS, 1999, 6 (01) : 119 - 129