Heteroclinic solutions of singular quasilinear bistable equations

被引:5
|
作者
Bonheure, Denis [1 ,2 ]
Coelho, Isabel [3 ]
Nys, Manon [4 ]
机构
[1] Univ Libre Bruxelles, Dept Math, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
[2] Univ Libre Bruxelles, INRIA Team MEPHYSTO, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
[3] Inst Super Engn Lisboa, Area Dept Matemat, Rua Conselheiro Emidio Navarro 1, P-1950062 Lisbon, Portugal
[4] Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Mean curvature operator in Lorentz-Minkowski space; Free energy functional; Phase transition; Increasing rearrangement; Rigidity; Symmetry; MEAN-CURVATURE OPERATOR; POSITIVE RADIAL SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; DIRICHLET PROBLEM; MINKOWSKI SPACE; RELATIVISTIC PENDULUM; PERIODIC-SOLUTIONS; PHI-LAPLACIAN; SYSTEMS;
D O I
10.1007/s00030-016-0418-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we consider the action functional integral(Rx omega) (1-root 1-vertical bar del u vertical bar(2) + W(u))d (x) over bar where 147 is a double well potential and is a bounded domain of RN-1. We prove existence, one-dimensionality and uniqueness (up to translations) of a smooth minimizing phase transition between the two stable states u = 1 and u 1. The question of existence of at least one minimal heteroctinic corniection far the non-autonomous model integral(R) (1-root 1-vertical bar u'vertical bar(2+)a(l)W(u))dl is also addressed. For this functional, we look for the possible assumptions on a(t) ensuring the existence of a minimizer.
引用
收藏
页数:29
相关论文
共 50 条