Heteroclinic solutions of singular quasilinear bistable equations

被引:5
|
作者
Bonheure, Denis [1 ,2 ]
Coelho, Isabel [3 ]
Nys, Manon [4 ]
机构
[1] Univ Libre Bruxelles, Dept Math, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
[2] Univ Libre Bruxelles, INRIA Team MEPHYSTO, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
[3] Inst Super Engn Lisboa, Area Dept Matemat, Rua Conselheiro Emidio Navarro 1, P-1950062 Lisbon, Portugal
[4] Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Mean curvature operator in Lorentz-Minkowski space; Free energy functional; Phase transition; Increasing rearrangement; Rigidity; Symmetry; MEAN-CURVATURE OPERATOR; POSITIVE RADIAL SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; DIRICHLET PROBLEM; MINKOWSKI SPACE; RELATIVISTIC PENDULUM; PERIODIC-SOLUTIONS; PHI-LAPLACIAN; SYSTEMS;
D O I
10.1007/s00030-016-0418-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we consider the action functional integral(Rx omega) (1-root 1-vertical bar del u vertical bar(2) + W(u))d (x) over bar where 147 is a double well potential and is a bounded domain of RN-1. We prove existence, one-dimensionality and uniqueness (up to translations) of a smooth minimizing phase transition between the two stable states u = 1 and u 1. The question of existence of at least one minimal heteroctinic corniection far the non-autonomous model integral(R) (1-root 1-vertical bar u'vertical bar(2+)a(l)W(u))dl is also addressed. For this functional, we look for the possible assumptions on a(t) ensuring the existence of a minimizer.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Heteroclinic solutions of singular quasilinear bistable equations
    Denis Bonheure
    Isabel Coelho
    Manon Nys
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [2] POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR SINGULAR EQUATIONS
    Goncalves, Jose Valdo
    Santos, Carlos Alberto P.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [3] Solutions to a class of singular quasilinear elliptic equations
    Wei, Lin
    Yang, Zuodong
    ANNALES POLONICI MATHEMATICI, 2010, 98 (03) : 231 - 240
  • [4] SOLUTIONS FOR SINGULAR QUASILINEAR SCHRODINGER EQUATIONS WITH ONE PARAMETER
    do O, Joao Marcos
    Moameni, Abbas
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (04) : 1011 - 1023
  • [5] Stabilization of solutions of certain singular quasilinear parabolic equations
    Muravnik, AB
    MATHEMATICAL NOTES, 2003, 74 (5-6) : 812 - 818
  • [6] SOLUTIONS TO SINGULAR QUASILINEAR ELLIPTIC EQUATIONS ON BOUNDED DOMAINS
    Li, Zhouxin
    Wang, Youjin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [7] Existence of Solutions to Quasilinear Elliptic Equations With Singular Weights
    Iturriaga, Leonelo
    Lorca, Sebastian
    Montenegro, Marcelo
    ADVANCED NONLINEAR STUDIES, 2010, 10 (01) : 109 - 120
  • [8] Rank 2 singular solutions for quasilinear wave equations
    Alinhac, S
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (18) : 955 - 984
  • [9] Existence and nonexistence of solutions for singular quadratic quasilinear equations
    Arcoya, David
    Carmona, Jose
    Leonori, Tommaso
    Martinez-Aparicio, Pedro J.
    Orsina, Luigi
    Petitta, Francesco
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (10) : 4006 - 4042
  • [10] Existence of solutions for a class of singular quasilinear elliptic equations
    Xin, Kuidong
    Chen, Caisheng
    Xiu, Zonghu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (08) : 1399 - 1415