Size of linear superpositions in molecular nanomagnets

被引:7
|
作者
Troiani, F. [1 ]
Zanardi, P. [2 ,3 ,4 ]
机构
[1] CNR, S3 Ist Nanosci, Modena, Italy
[2] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[3] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[4] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117542, Singapore
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 09期
关键词
HIGH-SPIN MOLECULES; MAGNETIC-PROPERTIES; BARRIER; CRYSTAL; CLUSTER; COMPLEX; STATES;
D O I
10.1103/PhysRevB.88.094413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molecular nanomagnets are zero-dimensional spin systems that exhibit quantum-mechanical behavior at low temperatures. Exploiting quantum-information theoretic measures, we quantify here the size of linear superpositions that can be generated within the ground multiplet of high-and low-spin nanomagnets. Amongst the former class of systems, we mainly focus on Mn-12 and Fe-8. General criteria for maximizing such measures are also outlined, and illustrated with reference to spin clusters of different geometries. The actual character (micro or macroscopic) of linear superpositions in low-spin systems is inherently ill-defined. Here, this issue is addressed with specific reference to the Cr7Ni and V-15 molecules, characterized by an S = 1/2 ground state. In both cases, the measures we obtain are larger than those of a single s = 1/2 spin but not proportionate to the number and value of the constituent spins.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Lanthanide molecular nanomagnets as probabilistic bits
    Gerliz M. Gutiérrez-Finol
    Silvia Giménez-Santamarina
    Ziqi Hu
    Lorena E. Rosaleny
    Salvador Cardona-Serra
    Alejandro Gaita-Ariño
    npj Computational Materials, 9
  • [32] Size of quantum superpositions as measured with classical detectors
    Sekatski, Pavel
    Sangouard, Nicolas
    Gisin, Nicolas
    PHYSICAL REVIEW A, 2014, 89 (01):
  • [33] Dephasing of quantum tunnelling in molecular nanomagnets
    张树群
    陈芝得
    Chinese Physics B, 2008, 17 (04) : 1436 - 1442
  • [34] Theoretical Understanding of Anisotropy in Molecular Nanomagnets
    Chibotaru, Liviu F.
    MOLECULAR NANOMAGNETS AND RELATED PHENOMENA, 2015, 164 : 185 - 229
  • [35] A note on the representation of continuous functions by linear superpositions
    Ismailov, Vugar E.
    EXPOSITIONES MATHEMATICAE, 2012, 30 (01) : 96 - 101
  • [36] Quantum tunnelling of magnetization in molecular nanomagnets
    Wernsdorfer, W
    Quantum Entanglement and Information Processing, 2004, 79 : 561 - +
  • [37] Lanthanide molecular nanomagnets as probabilistic bits
    Gutierrez-Finol, Gerliz M.
    Gimenez-Santamarina, Silvia
    Hu, Ziqi
    Rosaleny, Lorena E.
    Cardona-Serra, Salvador
    Gaita-Arino, Alejandro
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [38] Superradiance from crystals of molecular nanomagnets
    Chudnovsky, EM
    Garanin, DA
    PHYSICAL REVIEW LETTERS, 2002, 89 (15) : 1 - 157201
  • [39] A Quantum Computation Model for Molecular Nanomagnets
    Cirillo, Giovanni Amedeo
    Turvani, Giovanna
    Graziano, Mariagrazia
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2019, 18 : 1027 - 1039
  • [40] Relaxation of muon spins in molecular nanomagnets
    Lancaster, T.
    Blundell, S. J.
    Pratt, F. L.
    Franke, I.
    Steele, A. J.
    Baker, P. J.
    Salman, Z.
    Baines, C.
    Watanabe, I.
    Carretta, S.
    Timco, G. A.
    Winpenny, R. E. P.
    PHYSICAL REVIEW B, 2010, 81 (14):