Higher-order CPM Constructions

被引:3
|
作者
Gogioso, Stefano [1 ]
机构
[1] Univ Oxford, Oxford, England
关键词
D O I
10.4204/EPTCS.287.8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define a higher-order generalisation of the CPM construction based on arbitrary finite abelian group symmetries of symmetric monoidal categories. We show that our new construction is functorial, and that its closure under iteration can be characterised by seeing the construction as an algebra for an appropriate monad. We provide several examples of the construction, connecting to previous work on the CPM construction and on categorical probabilistic theories, as well as upcoming work on higher-order interference and hyper-decoherence.
引用
收藏
页码:145 / 162
页数:18
相关论文
共 50 条
  • [31] Higher-order learning
    Lewis S.
    [J]. Nature Reviews Neuroscience, 2021, 22 (2) : 75 - 75
  • [32] HIGHER-ORDER FACTORS
    ADCOCK, CJ
    [J]. BRITISH JOURNAL OF STATISTICAL PSYCHOLOGY, 1964, 17 (02): : 153 - 160
  • [33] Higher-order president
    Qualls, Sarah
    [J]. AMERICAN JOURNAL OF NURSING, 2007, 107 (09) : 72AAA - +
  • [34] Higher-Order Syllogistics
    Icard, Thomas F., III
    [J]. FORMAL GRAMMAR, FG 2014, 2014, 8612 : 1 - 14
  • [35] Higher-order learning
    Evdokimov, Piotr
    Garfagnini, Umberto
    [J]. EXPERIMENTAL ECONOMICS, 2022, 25 (04) : 1234 - 1266
  • [36] Higher-order learning
    Piotr Evdokimov
    Umberto Garfagnini
    [J]. Experimental Economics, 2022, 25 : 1234 - 1266
  • [37] HIGHER-ORDER IMAGERY
    HERZBERGER, M
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1961, 51 (02) : 135 - &
  • [38] HIGHER-ORDER ENDOMORPHISMS
    PATERLINI, RR
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1981, 53 (04): : 651 - 652
  • [39] Higher-order subtyping
    Pierce, B
    Steffen, M
    [J]. THEORETICAL COMPUTER SCIENCE, 1997, 176 (1-2) : 235 - 282
  • [40] Higher-order misinformation
    Harris, Keith Raymond
    [J]. SYNTHESE, 2024, 204 (04)