Individual dynamic prediction and prognostic analysis for long-term allograft survival after kidney transplantation

被引:2
|
作者
Huang, Baoyi [1 ]
Huang, Mingli [2 ]
Zhang, Chengfeng [1 ]
Yu, Zhiyin [1 ]
Hou, Yawen [3 ]
Miao, Yun [2 ]
Chen, Zheng [1 ]
机构
[1] Southern Med Univ, Sch Publ Hlth, Dept Biostat, Guangdong Prov Key Lab OfTrop Dis Res, Guangzhou 510515, Peoples R China
[2] Southern Med Univ, Nanfang Hosp, Dept Transplantat, Guangzhou 510515, Peoples R China
[3] Jinan Univ, Sch Econ, Dept Stat, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic prediction; Kidney transplantation; Longitudinal biomarkers; Precise medicine; Individual prediction; RENAL-TRANSPLANTATION; GRAFT-SURVIVAL; RECIPIENTS; MODELS; LANDMARKING; MORTALITY; ANEMIA;
D O I
10.1186/s12882-022-02996-0
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background Predicting allograft survival is vital for efficient transplant success. With dynamic changes in patient conditions, clinical indicators may change longitudinally, and doctors' judgments may be highly variable. It is necessary to establish a dynamic model to precisely predict the individual risk/survival of new allografts. Methods The follow-up data of 407 patients were obtained from a renal allograft failure study. We introduced a landmarking-based dynamic Cox model that incorporated baseline values (age at transplantation, sex, weight) and longitudinal changes (glomerular filtration rate, proteinuria, hematocrit). Model performance was evaluated using Harrell's C-index and the Brier score. Results Six predictors were included in our analysis. The Kaplan-Meier estimates of survival at baseline showed an overall 5-year survival rate of 87.2%. The dynamic Cox model showed the individual survival prediction with more accuracy at different time points (for the 5-year survival prediction, the C-index = 0.789 and Brier score = 0.065 for the average of all time points) than the static Cox model at baseline (C-index = 0.558, Brier score = 0.095). Longitudinal covariate prognostic analysis (with time-varying effects) was performed. Conclusions The dynamic Cox model can utilize clinical follow-up data, including longitudinal patient information. Dynamic prediction and prognostic analysis can be used to provide evidence and a reference to better guide clinical decision-making for applying early treatment to patients at high risk.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Long-Term Kidney Allograft Survival in Patients With Transplant Glomerulitis
    Nabokow, A.
    Khrabrova, M.
    Groene, H.
    Weithofer, P.
    Dobronravov, V.
    Kliem, V.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2014, 14 : 62 - 62
  • [32] Long-Term Kidney Allograft Survival in Patients With Transplant Glomerulitis
    Nabokow, A.
    Khrabrova, M.
    Groene, H.
    Weithofer, P.
    Dobronravov, V.
    Kliem, V.
    TRANSPLANTATION, 2014, 98 : 62 - 62
  • [33] PROGNOSTIC FACTORS OF LONG-TERM SURVIVAL AFTER LIVER TRANSPLANTATION FOR HEPATOCELLULAR CARCINOMA
    Ghalim, F.
    Sobesky, R.
    Pelletier, G.
    Adam, R.
    Castaing, D.
    Sebagh, M.
    Guettier, C.
    Samuel, D.
    Duclos-Vallee, J. C.
    TRANSPLANT INTERNATIONAL, 2013, 26 : 10 - 11
  • [34] Effect of Pancreas After Kidney Transplantation On Long-Term Kidney Allograft Function: 10 Year Outcomes
    Laftavi, M.
    Soliman, K.
    Mogadam, E.
    Patel, S.
    Feng, L.
    Said, M.
    Sharma, R.
    Zachariah, M.
    Pankewycz, O.
    TRANSPLANTATION, 2014, 98 : 218 - 218
  • [35] Prediction of long-term survival by using the Glasgow Prognostic Score in patients with hepatocellular carcinoma after liver transplantation
    Abe, Tomoyuki
    Tashiro, Hirotaka
    Hattori, Minoru
    Kuroda, Shintaro
    Tahara, Hiroyuki
    Ohira, Masahiro
    Kobayashi, Tsuyoshi
    Ide, Kentaro
    Ishiyama, Kohei
    Ohdan, Hideki
    HEPATOLOGY RESEARCH, 2016, 46 (07) : 622 - 633
  • [36] Exome Sequencing and Prediction of Long-Term Kidney Allograft Function
    Mesnard, Laurent
    Muthukumar, Thangamani
    Burbach, Maren
    Li, Carol
    Shang, Huimin
    Dadhania, Darshana
    Lee, John R.
    Sharma, Vijay K.
    Xiang, Jenny
    Suberbielle, Caroline
    Carmagnat, Maryvonnick
    Ouali, Nacera
    Rondeau, Eric
    Friedewald, John J.
    Abecassis, Michael M.
    Suthanthiran, Manikkam
    Campagne, Fabien
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (09)
  • [37] EXOME SEQUENCING AND PREDICTION OF LONG-TERM KIDNEY ALLOGRAFT FUNCTION
    Mesnard, L.
    Muthukumar, T.
    Burbach, M.
    Li, H.
    Shang, C.
    Dadhania, D.
    Lee, J. R.
    Sharma, V. K.
    Xiang, J.
    Suberbielle, C.
    Carmagnat, M.
    Ouali, N.
    Rondeau, E.
    Friedewald, J. J.
    Abecassis, M. M.
    Suthanthiran, M.
    Campagne, F.
    TRANSPLANT INTERNATIONAL, 2016, 29 : 1 - 1
  • [38] Long-term survival after kidney transplantation in an HIV-positive patient
    Roefs, Anne
    van der Ende, Marchina
    IJzermans, Jan
    Weimar, Willem
    van Gelder, Teun
    CLINICAL TRANSPLANTATION, 2009, 23 (02) : 278 - 281
  • [39] PROTEINURIA AT 1 YEAR AFTER KIDNEY TRANSPLANTATION AND LONG-TERM GRAFT SURVIVAL
    Kim, Hyung Woo
    Ryu, Geun Woo
    Lee, Sangmi
    Kang, Shinchan
    Nam, Yooju
    Lee, Seonyeong
    Huh, Kyu Ha
    Kim, Myoung Soo
    Kim, Yu Seun
    Kim, Beom Seok
    TRANSPLANTATION, 2020, 104 (09) : S363 - S363
  • [40] LONG-TERM SURVIVAL AND GRAFT FUNCTION AFTER CADAVER KIDNEY-TRANSPLANTATION
    LUND, F
    THAYSEN, JH
    LADEFOGED, J
    NERSTROM, B
    ACTA CHIRURGICA SCANDINAVICA, 1977, : 9 - 12