ROBUST SINGLE-LABEL CLASSIFICATION OF FACIAL ATTRIBUTES

被引:0
|
作者
Mohammed, Ahmed Abdulateef [1 ]
Sajjanhar, Atul [1 ]
机构
[1] Deakin Univ, Sch Informat Technol, Geelong, Vic 3216, Australia
关键词
Texture analysis; demographic information; expression information; facial attributes classification;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Texture analysis is extensively used for extraction of facial features. In this paper, we investigate extraction of facial features related to attributes of gender, age, race and expression. We propose novel approaches for texture analysis to improve single-label classification of these facial attributes. The proposed methods are derived by applying Local Binary Pattern based approaches on polar raster sampled face images. We perform experiments on three state-of-the-art face databases, namely, Face95, FERET and CK+. Experimental results show that the proposed approach improves the performance of Local Binary Pattern and its variants for single-label classification of facial attributes.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] SINGLE-LABEL AND DOUBLE-LABEL IMMUNOCYTOCHEMICAL STUDY OF THE OVINE SUPRACHIASMATIC NUCLEUS (SCN) - GABAERGIC AND PEPTIDERGIC RELATIONSHIPS
    JANSEN, HT
    GONG, QZ
    NORGREN, RB
    LEHMAN, MN
    [J]. BRAIN RESEARCH BULLETIN, 1994, 34 (05) : 499 - 506
  • [32] Study of data transformation techniques for adapting single-label prototype selection algorithms to multi-label learning
    Arnaiz-Gonzalez, Alvar
    Diez-Pastor, Jose-Francisco
    Rodriguez, Juan J.
    Garcia-Osorio, Cesar
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 109 : 114 - 130
  • [33] MULTICITE: Modeling realistic citations requires moving beyond the single-sentence single-label setting
    Lauscher, Anne
    Ko, Brandon
    Kuehl, Bailey
    Johnson, Sophie
    Cohan, Arman
    Jurgens, David
    Lo, Kyle
    [J]. NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 1875 - 1889
  • [34] MULTI-LABEL VS. COMBINED SINGLE-LABEL SOUND EVENT DETECTION WITH DEEP NEURAL NETWORKS
    Cakir, Emre
    Heittola, Toni
    Huttunen, Heikki
    Virtanen, Tuomas
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2551 - 2555
  • [35] MULTI-LABEL NETWORKS FOR FACE ATTRIBUTES CLASSIFICATION
    Aly, Sara Atito
    Yanikoglu, Berrin
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [36] The Design and Preclinical Evaluation of a Single-Label Bimodal Nanobody Tracer for Image-Guided Surgery
    Debie, Pieterjan
    Declerck, Noemi B.
    van Willigen, Danny
    Huygen, Celine M.
    De Sloovere, Bieke
    Mateusiak, Lukasz
    Bridoux, Jessica
    Puttemans, Janik
    Devoogdt, Nick
    van Leeuwen, Fijs W. B.
    Hernot, Sophie
    [J]. BIOMOLECULES, 2021, 11 (03) : 1 - 14
  • [37] A Robust Face Recognition using Automatically Detected Facial Attributes
    Suchitra, S.
    Chitrakala, S.
    Nithya, J.
    [J]. 2014 INTERNATIONAL CONFERENCE ON SCIENCE ENGINEERING AND MANAGEMENT RESEARCH (ICSEMR), 2014,
  • [38] Performance Evaluation of Single-Label and Multi-Label Remote Sensing Image Retrieval Using a Dense Labeling Dataset
    Shao, Zhenfeng
    Yang, Ke
    Zhou, Weixun
    [J]. REMOTE SENSING, 2018, 10 (06)
  • [39] Homogeneous Single-Label Biochemical Ras Activation Assay Using Time-Resolved Luminescence
    Martikkala, Eija
    Veltel, Stefan
    Kirjavainen, Jonna
    Rozwandowicz-Jansen, Anita
    Lamminmaki, Urpo
    Hanninen, Pekka
    Harma, Harri
    [J]. ANALYTICAL CHEMISTRY, 2011, 83 (24) : 9230 - 9233
  • [40] Single-label time-resolved luminescence assay for estrogen receptor-ligand binding
    Huttunen, Roope
    Shweta
    Martikkala, Eija
    Lahdenranta, Merja
    Virta, Pasi
    Hanninen, Pekka
    Harma, Harri
    [J]. ANALYTICAL BIOCHEMISTRY, 2011, 415 (01) : 27 - 31