UNPU: A 50.6TOPS/W Unified Deep Neural Network Accelerator with 1b-to-16b Fully-Variable Weight Bit-Precision

被引:0
|
作者
Lee, Jinmook [1 ]
Kim, Changhyeon [1 ]
Kang, Sanghoon [1 ]
Shin, Dongjoo [1 ]
Kim, Sangyeob [1 ]
Yoo, Hoi-Jun [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:218 / +
页数:3
相关论文
共 5 条
  • [1] UNPU: An Energy-Efficient Deep Neural Network Accelerator With Fully Variable Weight Bit Precision
    Lee, Jinmook
    Kim, Changhyeon
    Kang, Sanghoon
    Shin, Dongjoo
    Kim, Sangyeob
    Yoo, Hoi-Jun
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (01) : 173 - 185
  • [2] A 1.15 TOPS/W, 16-Cores Parallel Ultra-Low Power Cluster with 2b-to-32b Fully Flexible Bit-Precision and Vector Lockstep Execution Mode
    Garofalo, Angelo
    Ottavi, Gianmarco
    di Mauro, Alfio
    Conti, Francesco
    Tagliavini, Giuseppe
    Benini, Luca
    Rossi, Davide
    [J]. ESSCIRC 2021 - IEEE 47TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC), 2021, : 267 - 270
  • [3] Z-PIM: A Sparsity-Aware Processing-in-Memory Architecture With Fully Variable Weight Bit-Precision for Energy-Efficient Deep Neural Networks
    Kim, Ji-Hoon
    Lee, Juhyoung
    Lee, Jinsu
    Heo, Jaehoon
    Kim, Joo-Young
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2021, 56 (04) : 1093 - 1104
  • [4] A 16-Channel Fully Configurable Neural SoC With 1.52 μW/Ch Signal Acquisition, 2.79 μW/Ch Real-Time Spike Classifier, and 1.79 TOPS/W Deep Neural Network Accelerator in 22 nm FDSOI
    Zeinolabedin, Seyed Mohammad Ali
    Schuffny, Franz Marcus
    George, Richard
    Kelber, Florian
    Bauer, Heiner
    Scholze, Stefan
    Hanzsche, Stefan
    Stolba, Marco
    Dixius, Andreas
    Ellguth, Georg
    Walter, Dennis
    Hoeppner, Sebastian
    Mayr, Christian
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2022, 16 (01) : 94 - 107
  • [5] A 65nm 0.39-to-140.3TOPS/W 1-to-12b Unified Neural-Network Processor Using Block-Circulant-Enabled Transpose-Domain Acceleration with 8.1x Higher TOPS/mm2 and 6T HBST-TRAM-Based 2D Data-Reuse Architecture
    Yue, Jinshan
    Liu, Ruoyang
    Sun, Wenyu
    Yuan, Zhe
    Wang, Zhibo
    Tu, Yung-Ning
    Chen, Yi-Ju
    Ren, Ao
    Wang, Yanzhi
    Chang, Meng-Fan
    Li, Xueqing
    Yang, Huazhong
    Liu, Yongpan
    [J]. 2019 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2019, 62 : 138 - +