Electrochemical removal of dimethyl phthalate with diamond anodes

被引:30
|
作者
de Souza, Fernanda [1 ]
Saez, Cristina [2 ]
Canizares, Pablo [2 ]
de Motheo, Artur [1 ]
Rodrigo, Manuel [2 ]
机构
[1] Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Castilla La Mancha, Dept Chem Engn, Fac Chem Sci & Technol, E-13071 Ciudad Real, Spain
关键词
electrolysis; conductive-diamond; phthalate; wastewater treatment; BORON-DOPED DIAMOND; CATALYTIC OZONATION; CARBOXYLIC-ACIDS; SALICYLIC-ACID; WASTE-WATER; OXALIC-ACID; BDD ANODES; OXIDATION; DEGRADATION; ELECTRODES;
D O I
10.1002/jctb.4118
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BACKGROUNDIn this work, the electrolysis of dimethyl phthalate (DMP, a widely-use plasticizer) with conductive-diamond anodes is studied. RESULTSResults show that this technology is capable of depleting this pollutant in a wide range of initial concentrations. Although mass transfer limits the kinetics of the process, there is a significant contribution of mediated oxidation and the rate of the processes improve with increasing current density, while the efficiency decreases. A first stage in the oxidation of DMP consists of the attack on the methyl ester groups, and monomethyl phthalate and phthalate are the main aromatic intermediates. Further oxidation of these species results in the formation of maleic and oxalic acid, which behave as intermediates and are completely mineralized during the electrolysis. The presence of chloride in water leads to the formation of many more aromatic chlorinated intermediates from the action of hypochlorite on aromatics intermediates. Intermediates found and oxidation mechanisms proposed are consistent with those reported in the literature for other advanced oxidation processes. CONCLUSIONSDMP, TOC (total organic carbon) and COD (chemical oxygen demand) can be successfully removed using electrolysis with conductive-diamond anodes. DMP removal is faster than that of COD and TOC indicating the formation of reaction intermediates. (c) 2013 Society of Chemical Industry
引用
收藏
页码:282 / 289
页数:8
相关论文
共 50 条
  • [21] Electrochemical Oxidation of Sulfonamides with Boron-Doped Diamond and Pt Anodes
    Li, Hongna
    Jiang, Huan
    Liu, Chong
    Zhu, Changxiong
    Zhu, Xiuping P.
    CHEMISTRYOPEN, 2019, 8 (12): : 1421 - 1428
  • [22] Electrochemical synthesis of peroxodiphosphate using boron-doped diamond anodes
    Cañizares, P
    Larrondo, F
    Lobato, J
    Rodrigo, MA
    Sáez, C
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) : D191 - D196
  • [23] Electrochemical degradation of an anionic surfactant on boron-doped diamond anodes
    Louhichi, B.
    Ahmadi, M. F.
    Bensalah, N.
    Gadri, A.
    Rodrigo, M. A.
    JOURNAL OF HAZARDOUS MATERIALS, 2008, 158 (2-3) : 430 - 437
  • [24] Electrochemical decolourisation of dispersed indigo on boron-doped diamond anodes
    Bechtold, Thomas
    Turcanu, Aurora
    Schrott, Wolfgang
    DIAMOND AND RELATED MATERIALS, 2006, 15 (10) : 1513 - 1519
  • [25] Electrochemical ozone production anodes and a solid polymer using diamond electrolyte
    Kraft, A
    Stadelmann, M
    Wünsche, M
    Blaschke, M
    ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (05) : 883 - 886
  • [26] Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes
    E. Weiss
    C. Sáez
    K. Groenen-Serrano
    P. Cañizares
    A. Savall
    M. A. Rodrigo
    Journal of Applied Electrochemistry, 2008, 38 : 93 - 100
  • [27] Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes
    Weiss, E.
    Sáez, C.
    Groenen-Serrano, K.
    Cañizares, P.
    Savall, A.
    Rodrigo, M.A.
    Journal of Applied Electrochemistry, 2008, 38 (01): : 93 - 100
  • [28] Electrochemical production of peroxocarbonate at room temperature using conductive diamond anodes
    Ruiz-Ruiz E.J.
    Meas Y.
    Ortega-Borges R.
    Jurado Baizabal J.L.
    Ruiz-Ruiz, E.J. (edgar.ruizr@uanl.mx), 1600, Allerton Press Incorporation (50): : 478 - 484
  • [29] Diamond cylindrical anodes for electrochemical treatment of persistent compounds in aqueous solution
    Zanin, Hudson
    Teofilo, Reinaldo F.
    Peterlevitz, Alfredo C.
    Oliveira, Ulisses
    de Paiva, Juliana C.
    Ceragioli, Helder Jose
    Reis, Efraim L.
    Baranauskas, Vitor
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (03) : 323 - 330
  • [30] Applicability of electrochemical oxidation using diamond anodes to the treatment of a sulfonylurea herbicide
    Souza, F.
    Quijorna, S.
    Lanza, M. R. V.
    Saez, C.
    Canizares, P.
    Rodrigo, M. A.
    CATALYSIS TODAY, 2017, 280 : 192 - 198