MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity

被引:111
|
作者
Sheng, Xinxin [1 ]
Dong, Dexuan [3 ]
Lu, Xiang [2 ]
Zhang, Li [1 ]
Chen, Ying [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangdong Prov Key Lab Funct Soft Condensed Matte, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Natl Engn Res Ctr Novel Equipment Polymer Proc, Guangdong Key Lab Tech & Equipment Macromol Adv M, Key Lab Polymer Proc Engn,Minist Educ, Guangzhou 510641, Peoples R China
[3] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Thermal energy storage; Phase change materials; Pomelo peel foam; MXene; GRAPHENE OXIDE; NANOCOMPOSITES; PERFORMANCE; TRANSITION; AEROGEL; FOAM;
D O I
10.1016/j.compositesa.2020.106067
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phase change materials (PCMs) have attracted great interest from researchers and have been widely developed in the field of solar thermal energy storage. Herein, a novel bio-based pomelo peel foam (PPF)/polyethylene glycol (PEG) composite PCM was designed and prepared via the simple impregnation process, which is further modified with low loading of MXene nanosheets for the purpose of improving its light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity. With the incorporation of MXene nanosheets into PPF, the light-to-thermal conversion efficiency was improved obviously, the loading of PEG in form-stable composites phase change materials (FCPCMs) increased from 86.9 wt% (FCPCM-1) to 96.2 wt% (FCPCM-2, FCPCM-3 and FCPCM-4), and the thermal conductivity of obtained PPF@MXene/PEG FCPCMs was also improved (from 0.25 W/mK to 0.42 W/mK). It shows that the obtained PPF@MXene/PEG FCPCMs can be fully utilized in the field of solar thermal energy storage.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Novel light-driven and electro-driven polyethylene glycol/two-dimensional MXene form-stable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage
    Lu, Xiang
    Huang, Haowei
    Zhang, Xinya
    Lin, Pengcheng
    Huang, Jintao
    Sheng, Xinxin
    Zhang, Li
    Qu, Jin-ping
    COMPOSITES PART B-ENGINEERING, 2019, 177
  • [22] Bio-based sunflower carbon/polyethylene glycol shape-stabilized phase change materials for thermal energy storage
    Gao, Ning
    Du, Jiaoli
    Yang, Wenbo
    Sun, Bocun
    Li, Juncheng
    Xia, Tian
    Li, Youbing
    Yang, Chaolong
    Liu, Xiaolin
    RSC ADVANCES, 2024, 14 (33) : 24141 - 24151
  • [23] MXene-decorated bio-based porous carbon composite phase change material for superior solar-thermal energy storage and thermal management of electronic components
    Chen, Wenjing
    Xiao, Shikun
    Liu, Yi
    Hu, Xiaowu
    Xie, Yuqiong
    Liu, Yichi
    Ma, Yan
    Luo, Lixiang
    Jiang, Xiongxin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 1857 - 1873
  • [24] Preparation of erythritol-graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications
    Karthik, M.
    Faik, A.
    Blanco-Rodriguez, P.
    Rodriguez-Aseguinolaza, J.
    D'Aguanno, B.
    CARBON, 2015, 94 : 266 - 276
  • [25] Solar thermal energy storage based on sodium acetate trihydrate phase change hydrogels with excellent light-to-thermal conversion performance
    Xiao, Qiangqiang
    Fan, Jiaxin
    Li, Li
    Xu, Tao
    Yuan, Wenhui
    ENERGY, 2018, 165 : 1240 - 1247
  • [26] Polyurethane template-based erythritol/graphite foam composite phase change materials with enhanced thermal conductivity and solar-thermal energy conversion efficiency
    Wang, Kunyin
    Sun, Chengyu
    Biney, Bernard Wiafe
    Li, Weining
    Al-shiaani, Nabil. H. A.
    Chen, Kun
    Liu, Dong
    Guo, Aijun
    POLYMER, 2022, 256
  • [27] Shape stable composite phase change material with improved thermal conductivity for electrical-to-thermal energy conversion and storage
    Islam, Anas
    Pandey, A. K.
    Saidur, R.
    Tyagi, V. V.
    MATERIALS TODAY SUSTAINABILITY, 2024, 25
  • [28] Thermal conductivity enhanced polyethylene glycol/expanded perlite shape-stabilized composite phase change materials with Cu powder for thermal energy storage
    Xu, Shanmu
    Zhang, Xiaoguang
    Huang, Zhaohui
    Liu, Yangai
    Fang, Minghao
    Wu, Xiaowen
    Min, Xin
    MATERIALS RESEARCH EXPRESS, 2018, 5 (09):
  • [29] Design and preparation of Ag modified expanded graphite based composite phase change materials with enhanced thermal conductivity and light-to-thermal properties
    Wen, Ruilong
    Zhu, Shengbo
    Wu, Maomao
    Chen, Weixing
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [30] Novel composite phase change materials with enhancement of light-thermal conversion, thermal conductivity and thermal storage capacity
    Zhang, Jiasheng
    Wang, Zongming
    Li, Xiangqi
    Wu, Xiao
    SOLAR ENERGY, 2020, 196 : 419 - 426