Parameter Identification of Chaotic System Based on Quantum PSO Algorithm

被引:0
|
作者
Liu, Ting [1 ]
Pan, Liwu
Meng, Qingwei [1 ]
Li, Yuping [1 ]
机构
[1] Zhengzhou Normal Univ, Dept Informat Technol, Zhengzhou, Henan, Peoples R China
关键词
Particle Swarm Optimization (PSO); Quantum PSO (QPSO); Parameter Identification; Chaotic System; PARTICLE SWARM OPTIMIZATION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we employed a new variant of particle swarm optimization (PSO) technique named quantum PSO (QPSO) to search for optimal parameters of chaotic system by minimizing errors between the model's evaluated outputs and the actual ones. The performance of the QPSO is tested via simulation in Matlab. Identification results aptly show that the QPSO algorithm has the advantage of high parameter identification precision and it provides a new way for parameter identification of chaotic system.
引用
收藏
页码:1982 / 1985
页数:4
相关论文
共 50 条
  • [41] Parameter identification for dynamic damping system based on genetic algorithm
    Zeng, Yulu
    [J]. Advances in Modelling and Analysis C, 2017, 72 (02): : 101 - 113
  • [42] Parameters identification of chaotic system by chaotic gravitational search algorithm
    Li, Chaoshun
    Zhou, Jianzhong
    Xiao, Jian
    Xiao, Han
    [J]. CHAOS SOLITONS & FRACTALS, 2012, 45 (04) : 539 - 547
  • [43] Parameter identification of BIPT system using chaotic-enhanced fruit fly optimization algorithm
    Yuan, Xiaofang
    Liu, Yuanming
    Xiang, Yongzhong
    Yan, Xinggang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 1267 - 1281
  • [44] Parameter identification of capacitive transfer system based on Fitting Algorithm
    Chen, Chen
    Li, Chenhui
    Liao, Chenglin
    [J]. 2020 3RD INTERNATIONAL CONFERENCE ON GREEN ENERGY AND ENVIRONMENT ENGINEERING, 2021, 633
  • [45] An Improved PSO Algorithm for High Accurate Parameter Identification of PV Model
    Gong, Lili
    Cao, Wu
    Zhao, Jianfeng
    [J]. 2017 1ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2017 17TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2017,
  • [46] An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models
    Zhang, Junhao
    Xia, Pinqi
    [J]. JOURNAL OF SOUND AND VIBRATION, 2017, 389 : 153 - 167
  • [47] The identification of axial magnetic bearing system based on LS-PSO algorithm
    Wei, Tong
    Zhao, Lin
    Zhao, Lishuang
    [J]. INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2015, 49 (04) : 463 - 473
  • [48] Adaptive synchronization and parameter identification for a unified chaotic system
    Wang, ZS
    Liao, XX
    [J]. ICIA 2004: PROCEEDINGS OF 2004 INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, 2004, : 20 - 22
  • [49] Parameter Identification of a New Hyper-chaotic System
    Dang, Hong-Gang
    [J]. 2013 FIFTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2013), 2013, : 785 - 787
  • [50] Study of RBF Neural Network Based on PSO Algorithm in Nonlinear System Identification
    Ye Guoqiang
    Li Weiguang
    Wan Hao
    [J]. PROCEEDINGS OF 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2015), 2015, : 852 - 855