THERMODYNAMICAL FORMALISM ASSOCIATED WITH INDUCING SCHEMES FOR ONE-DIMENSIONAL MAPS

被引:20
|
作者
Pesin, Yakov [1 ]
Senti, Samuel [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
基金
瑞士国家科学基金会;
关键词
Equilibrium measures; Gibbs measures; inducing schemes; thermodynamic formalism; unimodal maps;
D O I
10.17323/1609-4514-2005-5-3-669-678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a smooth map f of a compact interval I admitting an inducing scheme we establish a thermodynamical formalism, i.e., describe a class of real-valued potential functions phi on I which admit a unique equilibrium measure mu(phi). Our results apply to unimodal maps corresponding to a positive Lebesgue measure set of parameters in a one-parameter transverse family.
引用
收藏
页码:669 / 678
页数:10
相关论文
共 50 条
  • [31] ITERATIVE PROPERTIES OF NONQUADRATIC ONE-DIMENSIONAL MAPS
    MO, A
    HEMMER, PC
    [J]. PHYSICA SCRIPTA, 1984, 29 (04): : 296 - 302
  • [32] Approach to the ordering of one-dimensional quadratic maps
    [J]. Chaos Solitons Fractals, 4 (565):
  • [33] CONTINUOUS-MAPS OF ONE-DIMENSIONAL SOLENOIDS
    USTINOV, YI
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1980, 35 (03) : 303 - 308
  • [34] On the full periodicity kernel for one-dimensional maps
    Leseduarte, MC
    Llibre, J
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 101 - 126
  • [35] GEOMETRY OF GEOMETRICALLY FINITE ONE-DIMENSIONAL MAPS
    JIANG, YP
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (03) : 639 - 647
  • [36] How to work with one-dimensional quadratic maps
    Pastor, G
    Romera, M
    Alvarez, G
    Montoya, F
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 18 (05) : 899 - 915
  • [37] Harmonic structure of one-dimensional quadratic maps
    Pastor, G
    Romera, M
    Montoya, F
    [J]. PHYSICAL REVIEW E, 1997, 56 (02): : 1476 - 1483
  • [38] Computation of symbolic dynamics for one-dimensional maps
    Sella, Lorenzo
    Collins, Pieter
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (02) : 418 - 436
  • [39] ONE-DIMENSIONAL ASYMMETRICALLY COUPLED MAPS WITH DEFECTS
    BIFERALE, L
    CRISANTI, A
    FALCIONI, M
    VULPIANI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (18): : L923 - L928
  • [40] On conjugacy of natural extensions of one-dimensional maps
    Boronski, J.
    Minc, P.
    Stimac, S.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (09) : 2915 - 2937