Hydrodynamic Limit for Weakly Asymmetric Simple Exclusion Processes in Crystal Lattices

被引:3
|
作者
Tanaka, Ryokichi [1 ]
机构
[1] Kyoto Univ, Dept Math, Sakyo Ku, Kyoto 6068502, Japan
基金
日本学术振兴会;
关键词
LARGE DEVIATION;
D O I
10.1007/s00220-012-1574-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the hydrodynamic limit for weakly asymmetric simple exclusion processes in crystal lattices. We construct a suitable scaling limit by using a discrete harmonic map. As we shall observe, the quasi-linear parabolic equation in the limit is defined on a flat torus and depends on both the local structure of the crystal lattice and the discrete harmonic map. We formulate the local ergodic theorem on the crystal lattice by introducing the notion of local function bundle, which is a family of local functions on the configuration space. The ideas and methods are taken from the discrete geometric analysis to these problems. Results we obtain are extensions of ones by Kipnis, Olla and Varadhan to crystal lattices.
引用
收藏
页码:603 / 641
页数:39
相关论文
共 50 条
  • [31] Quasi-static limit for the asymmetric simple exclusion
    Anna De Masi
    Stefano Marchesani
    Stefano Olla
    Lu Xu
    Probability Theory and Related Fields, 2022, 183 : 1075 - 1117
  • [32] Effect of detachments in asymmetric simple exclusion processes
    Mirin, N
    Kolomeisky, AB
    JOURNAL OF STATISTICAL PHYSICS, 2003, 110 (3-6) : 811 - 823
  • [33] Asymmetric simple exclusion processes with diffusive bottlenecks
    Klumpp, S
    Lipowsky, R
    PHYSICAL REVIEW E, 2004, 70 (06):
  • [34] Effect of Detachments in Asymmetric Simple Exclusion Processes
    Nikolay Mirin
    Anatoly B. Kolomeisky
    Journal of Statistical Physics, 2003, 110 : 811 - 823
  • [35] Ramp effects in asymmetric simple exclusion processes
    Huang, Ding-Wei
    Traffic and Granular Flow ' 05, 2007, : 509 - 514
  • [36] MIXING TIME AND CUTOFF FOR THE WEAKLY ASYMMETRIC SIMPLE EXCLUSION PROCESS
    Labbe, Cyril
    Lacoin, Hubert
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (04): : 1847 - 1883
  • [37] Theoretical investigation of totally asymmetric exclusion processes on lattices with junctions
    Pronina, E
    Kolomeisky, AB
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 159 - 175
  • [38] Power spectra of totally asymmetric exclusion processes on lattices with a junction
    Wang, Dong-Xiang
    Jiang, Rui
    Hu, Mao-Bin
    Wu, Qing-Song
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (02):
  • [39] Hydrodynamical limit for spatially heterogeneous simple exclusion processes
    C. Bahadoran
    Probability Theory and Related Fields, 1998, 110 : 287 - 331
  • [40] Hydrodynamical limit for spatially heterogeneous simple exclusion processes
    Bahadoran, C.
    Probability Theory and Related Fields, 110 (03):