The minimum sum of absolute errors regression: A robust alternative to the least squares regression

被引:0
|
作者
Narula, SC
Saldiva, PHN
Andre, CDS
Elian, SN
Ferreira, AF
Capelozzi, V
机构
[1] Virginia Commonwealth Univ, Sch Business, Richmond, VA 23284 USA
[2] Univ Sao Paulo, Sao Paulo, Brazil
关键词
D O I
10.1002/(SICI)1097-0258(19990615)18:11<1401::AID-SIM136>3.0.CO;2-G
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper concerns the minimum sum of absolute errors regression. It is a more robust alternative to the popular least squares regression whenever there are outliers in the values of the response variable, or the errors follow a long tailed distribution, or the loss function is proportional to the absolute errors rather than their squared values. We use data from a study of interstitial lung disease to illustrate the method, interpret the findings, and contrast with least squares regression. We point out some of the problems with the least squares analysis and show how to avoid these with the minimum sum of absolute errors analysis. (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:1401 / 1417
页数:17
相关论文
共 50 条
  • [31] 2 ROBUST ALTERNATIVES TO LEAST-SQUARES REGRESSION
    HILL, RW
    HOLLAND, PW
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (360) : 828 - 833
  • [32] ALTERNATIVE METHOD TO PRINCIPLE OF LEAST SQUARES IN THEORY OF REGRESSION
    NARAYANA, CL
    SUBRAHMANYAM, M
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES B, 1969, 31 (DEC): : 427 - 434
  • [33] A simulation study on robust alternatives of least squares regression
    Department of Epidemiology and Biostatistics, School of Public Health, Medical Sciences/University of Tehran, P.O. Box 14185-463, Tehran, Iran
    [J]. J. Appl. Sci., 2007, 22 (3469-3476):
  • [34] The Comparison of Robust Partial Least Squares Regression with Robust Principal Component Regression on a Real Data
    Polat, Esra
    Gunay, Suleyman
    [J]. 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1458 - 1461
  • [35] A robust partial least squares regression method with applications
    Gonzalez, Javier
    Pena, Daniel
    Romera, Rosario
    [J]. JOURNAL OF CHEMOMETRICS, 2009, 23 (1-2) : 78 - 90
  • [36] A robust weighted least squares support vector regression based on least trimmed squares
    Chen, Chuanfa
    Yan, Changqing
    Li, Yanyan
    [J]. NEUROCOMPUTING, 2015, 168 : 941 - 946
  • [37] Applications and algorithms for least trimmed sum of absolute deviations regression
    Hawkins, DM
    Olive, D
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 32 (02) : 119 - 134
  • [38] Least sum of absolute deviations regression: Distance, leverage, and influence
    Berry, KJ
    Mielke, PW
    [J]. PERCEPTUAL AND MOTOR SKILLS, 1998, 86 (03) : 1063 - 1070
  • [39] Robust second-order least-squares estimation for regression models with autoregressive errors
    Rosadi, D.
    Filzmoser, P.
    [J]. STATISTICAL PAPERS, 2019, 60 (01) : 105 - 122
  • [40] Robust second-order least-squares estimation for regression models with autoregressive errors
    D. Rosadi
    P. Filzmoser
    [J]. Statistical Papers, 2019, 60 : 105 - 122