Protein domain recurrence and order can enhance prediction of protein functions

被引:19
|
作者
Messih, Mario Abdel [4 ,5 ]
Chitale, Meghana [1 ]
Bajic, Vladimir B. [5 ]
Kihara, Daisuke [1 ,2 ,3 ]
Gao, Xin [4 ,5 ]
机构
[1] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Biol Sci, Coll Sci, W Lafayette, IN 47907 USA
[3] Purdue Univ, Markey Ctr Struct Biol, W Lafayette, IN 47907 USA
[4] KAUST, Math & Comp Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[5] KAUST, Computat Biosci Res Ctr, Thuwal 239556900, Saudi Arabia
关键词
ADAPTER PROTEIN; DATABASE; SEVENLESS; ANNOTATION; INTERACTS; FAMILIES; RESOURCE;
D O I
10.1093/bioinformatics/bts398
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Burgeoning sequencing technologies have generated massive amounts of genomic and proteomic data. Annotating the functions of proteins identified in this data has become a big and crucial problem. Various computational methods have been developed to infer the protein functions based on either the sequences or domains of proteins. The existing methods, however, ignore the recurrence and the order of the protein domains in this function inference. Results: We developed two new methods to infer protein functions based on protein domain recurrence and domain order. Our first method, DRDO, calculates the posterior probability of the Gene Ontology terms based on domain recurrence and domain order information, whereas our second method, DRDO-NB, relies on the naive Bayes methodology using the same domain architecture information. Our large-scale benchmark comparisons show strong improvements in the accuracy of the protein function inference achieved by our new methods, demonstrating that domain recurrence and order can provide important information for inference of protein functions.
引用
收藏
页码:I444 / I450
页数:7
相关论文
共 50 条
  • [21] Protein function prediction using domain families
    Robert Rentzsch
    Christine A Orengo
    BMC Bioinformatics, 14
  • [22] Protein function prediction using domain families
    Rentzsch, Robert
    Orengo, Christine A.
    BMC BIOINFORMATICS, 2013, 14
  • [23] A Preliminary Study on the Prediction of Human Protein Functions
    Bologna, Guido
    Veuthey, Anne-Lise
    Pagni, Marco
    Lane, Lydie
    Bairoch, Amos
    FOUNDATIONS ON NATURAL AND ARTIFICIAL COMPUTATION: 4TH INTERNATIONAL WORK-CONFERENCE ON THE INTERPLAY BETWEEN NATURAL AND ARTIFICIAL COMPUTATION, IWINAC 2011, PART I, 2011, 6686 : 334 - 343
  • [24] Effective energy functions for protein structure prediction
    Lazaridis, T
    Karplus, M
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (02) : 139 - 145
  • [25] Prediction of Protein Molecular Functions Using Transformers
    de Mello, Felipe Lopes
    de Oliveira, Gabriel Bianchin
    Pedrini, Helio
    Dias, Zanoni
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT II, 2023, 13589 : 379 - 387
  • [26] Semantic Annotation Modelling for Protein Functions Prediction
    Peychev, Deyan
    Avdjieva, Irena
    ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, AIMSA 2018, 2018, 11089 : 275 - 280
  • [27] ODiNPred: comprehensive prediction of protein order and disorder
    Rupashree Dass
    Frans A. A. Mulder
    Jakob Toudahl Nielsen
    Scientific Reports, 10
  • [28] ODiNPred: comprehensive prediction of protein order and disorder
    Dass, Rupashree
    Mulder, Frans A. A.
    Nielsen, Jakob Toudahl
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [29] A matrix based algorithm for protein-protein interaction prediction using domain-domain associations
    Priya, S. Binny
    Saha, Subhojit
    Anishetty, Ramesh
    Anishetty, Sharmila
    JOURNAL OF THEORETICAL BIOLOGY, 2013, 326 : 36 - 42
  • [30] Prediction of Butyrylcholinesterase Function Through Domain Analysis and Protein-Protein Interaction
    Rao, Allam Appa
    Srinivas, Kudipudi
    Rajender, R.
    Das, Undurti N.
    CURRENT NUTRITION & FOOD SCIENCE, 2008, 4 (03) : 176 - 184