Hopf bifurcation of a chemostat model

被引:1
|
作者
Qu, Rongning [1 ]
Li, Xiaofang [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Weihai 264209, Peoples R China
关键词
Delay; Hopf bifurcation; Stability; Periodic solution; Oscillation; ANAEROBIC CONTINUOUS-CULTURE; KLEBSIELLA-PNEUMONIAE; GLYCEROL METABOLISM; KINETIC-MODEL; 1,3-PROPANEDIOL; OSCILLATION; PATHWAY; GROWTH;
D O I
10.1016/j.amc.2012.09.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A chemostat model with discrete time delay is proposed to describe oscillatory behavior in microbial continuous culture. Stability and Hopf bifurcation are discussed, including the changing regularity of bifurcation value. Explicit algorithm for determining the direction of Hopf bifurcation and the stability of periodic solution is derived, using the theory of normal form and center manifold. Finally, some numerical simulations are performed to illustrate the analytical results found. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3541 / 3552
页数:12
相关论文
共 50 条
  • [21] HOPF BIFURCATION ANALYSIS OF A PHAGE THERAPY MODEL
    Kyaw, Ei Ei
    Zheng, Hongchan
    Wang, Jingjing
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2023, 18 (01) : 87 - 106
  • [22] A Hopf bifurcation in the Kuramoto-Daido model
    Chiba, Hayato
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 546 - 570
  • [23] The Hopf bifurcation in the Kaldor-Kalecki model
    Szydlowski, M
    Krawiec, A
    COMPUTATION IN ECONOMICS, FINANCE AND ENGINEERING: ECONOMIC SYSTEMS, 2000, : 391 - 396
  • [24] Hopf bifurcation control for an internet congestion model
    Chen, Z
    Yu, P
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (08): : 2643 - 2651
  • [25] Hopf Bifurcation of An Eco-Epidemiological Model
    Liu, Xuanliang
    Wang, Chaoyang
    Liu, Yongqi
    PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 654 - 657
  • [26] Hopf bifurcation in an Internet congestion control model
    Li, CG
    Chen, GR
    Liao, XF
    Yu, JB
    CHAOS SOLITONS & FRACTALS, 2004, 19 (04) : 853 - 862
  • [27] Hopf bifurcation in a DDE model of gene expression
    Verdugo, Anael
    Rand, Richard
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) : 235 - 242
  • [28] Hopf Bifurcation in a Delayed Intraguild Predation Model
    Rabago, Julius Fergy T.
    Collera, Juancho A.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2018, 42 (05) : 691 - 709
  • [29] Hopf bifurcation in the Clarida, Gali, and Gertler model
    Barnett, William A.
    Eryilmaz, Unal
    ECONOMIC MODELLING, 2013, 31 : 401 - 404
  • [30] Hopf bifurcation for an SIR model with age structure
    Cao, Hui
    Yan, Dongxue
    Xu, Xiaxia
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2021, 16