DISCRIMINATING CODES IN BIPARTITE GRAPHS: BOUNDS, EXTREMAL CARDINALITIES, COMPLEXITY

被引:20
|
作者
Charbit, Emmanuel [1 ]
Charon, Irene [1 ,2 ]
Cohen, Gerard [1 ,2 ]
Hudry, Olivier [1 ,2 ]
Lobstein, Antoine [1 ,2 ]
机构
[1] TELECOM ParisTech, Inst TELECOM, F-75634 Paris 13, France
[2] CNRS, LTCI, UMR 5141, F-75634 Paris 13, France
关键词
Graph theory; bipartite graphs; discriminating codes; identifying codes; locating-dominating codes; separating codes; complexity;
D O I
10.3934/amc.2008.2.403
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider an undirected bipartite graph G = (V = I boolean OR A, E), with no edge inside I nor A. For any vertex v is an element of V, let N(v) be the set of neighbours of v. A code C subset of A is said to be discriminating if all the sets N(i) boolean AND C, i is an element of I, are nonempty and distinct. We study some properties of discriminating codes. In particular, we give bounds on the minimum size of these codes, investigate graphs where minimal discriminating codes have size close to the upper bound, or give the exact minimum size in particular graphs; we also give an NP-completeness result.
引用
收藏
页码:403 / 420
页数:18
相关论文
共 50 条
  • [41] CODES IN BIPARTITE DISTANCE-REGULAR GRAPHS
    BANNAI, E
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1977, 16 (OCT): : 197 - 202
  • [42] ON AN EXTREMAL PROBLEM IN THE CLASS OF BIPARTITE 1-PLANAR GRAPHS
    Czap, Julius
    Przybylo, Jakub
    Skrabulakova, Erika
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (01) : 141 - 151
  • [43] First and second extremal bipartite graphs with respect to PI index
    Yarahmadi, Z.
    Ashrafi, A. R.
    Gutman, I.
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (9-10) : 2460 - 2463
  • [44] EXTREMAL POLYNOMIALS FOR OBTAINING BOUNDS FOR SPHERICAL CODES AND DESIGNS
    BOYVALENKOV, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 14 (02) : 167 - 183
  • [45] The Complexity of Contracting Bipartite Graphs into Small Cycles
    Krithika, R.
    Sharma, Roohani
    Tale, Prafullkumar
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2022), 2022, 13453 : 356 - 369
  • [46] Complexity of short schedules for UET bipartite graphs
    Bampis, Evripidis
    RAIRO Recherche Operationnelle, 1999, 33 (03): : 367 - 370
  • [47] On the complexity of construction of complete and complete bipartite graphs
    Zaytsev, D. V.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2008, 18 (03): : 251 - 269
  • [48] Extremal values of degree-based entropies of bipartite graphs
    Cambie, Stijn
    Dong, Yanni
    Mazzamurro, Matteo
    INFORMATION SCIENCES, 2024, 676
  • [49] Permanental bounds for the signless Laplacian matrix of bipartite graphs and unicyclic graphs
    Li, Shuchao
    Zhang, Li
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (02): : 145 - 158
  • [50] Complexity of a disjoint matching problem on bipartite graphs
    Puleo, Gregory J.
    INFORMATION PROCESSING LETTERS, 2016, 116 (10) : 649 - 652