DISCRIMINATING CODES IN BIPARTITE GRAPHS: BOUNDS, EXTREMAL CARDINALITIES, COMPLEXITY

被引:20
|
作者
Charbit, Emmanuel [1 ]
Charon, Irene [1 ,2 ]
Cohen, Gerard [1 ,2 ]
Hudry, Olivier [1 ,2 ]
Lobstein, Antoine [1 ,2 ]
机构
[1] TELECOM ParisTech, Inst TELECOM, F-75634 Paris 13, France
[2] CNRS, LTCI, UMR 5141, F-75634 Paris 13, France
关键词
Graph theory; bipartite graphs; discriminating codes; identifying codes; locating-dominating codes; separating codes; complexity;
D O I
10.3934/amc.2008.2.403
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider an undirected bipartite graph G = (V = I boolean OR A, E), with no edge inside I nor A. For any vertex v is an element of V, let N(v) be the set of neighbours of v. A code C subset of A is said to be discriminating if all the sets N(i) boolean AND C, i is an element of I, are nonempty and distinct. We study some properties of discriminating codes. In particular, we give bounds on the minimum size of these codes, investigate graphs where minimal discriminating codes have size close to the upper bound, or give the exact minimum size in particular graphs; we also give an NP-completeness result.
引用
收藏
页码:403 / 420
页数:18
相关论文
共 50 条
  • [1] Locating-dominating codes: Bounds and extremal cardinalities
    Caceres, Jose
    Hernando, Carmen
    Mora, Merce
    Pelayo, Ignacio M.
    Luz Puertas, Maria
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 38 - 45
  • [2] Discriminating codes in (bipartite) planar graphs
    Charon, Irene
    Cohen, Gerard
    Hudry, Olivier
    Lobstein, Antoine
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) : 1353 - 1364
  • [3] Extremal cardinalities for identifying and locating-dominating codes in graphs
    Charon, Irene
    Hudry, Olivier
    Lobstein, Antoine
    DISCRETE MATHEMATICS, 2007, 307 (3-5) : 356 - 366
  • [4] Entropy/length profiles, bounds on the minimal covering of bipartite graphs, and trellis complexity of nonlinear codes
    Reuven, I
    Be'ery, Y
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (02) : 580 - 598
  • [5] Bounds and Extremal Graphs for Total Dominating Identifying Codes
    Foucaud, Florent
    Lehtila, Tuomo
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (03): : 1 - 30
  • [6] DOMINATING 2-BROADCAST IN GRAPHS: COMPLEXITY, BOUNDS AND EXTREMAL GRAPHS
    Caceres, J.
    Hernando, C.
    Mora, M.
    Pelayo, I. M.
    Puertas, M. L.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (01) : 205 - 223
  • [7] Monitoring Edge-Geodetic Sets in Graphs: Extremal Graphs, Bounds, Complexity
    Foucaud, Florent
    Marcille, Pierre-Marie
    Myint, Zin Mar
    Sandeep, R. B.
    Sen, Sagnik
    Taruni, S.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 29 - 43
  • [8] Possible cardinalities for identifying codes in graphs
    Charon, Irene
    Hudry, Olivier
    Lobstein, Antoine
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 32 : 177 - 195
  • [9] On Extremal Bipartite Tricyclic Graphs
    He, Fangguo
    Zhu, Zhongxun
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 77 (03) : 655 - 672
  • [10] On extremal bipartite bicyclic graphs
    Huang, Jing
    Li, Shuchao
    Zhao, Qin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) : 1242 - 1255