Gauss sums and binomial coefficients

被引:3
|
作者
Lee, DH
Hahn, SG
机构
[1] Future Syst Inc, Kangnam Gu, Seoul 135851, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math, Yusong Gu, Taejon 305701, South Korea
关键词
Gauss sum; Eisenstein sum; binomial coefficient;
D O I
10.1006/jnth.2001.2688
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose p = tn + r is a prime and splits as p(1)p(2) in Q(root-t). Let q = p(f) where f is the order of r modulo t, chi = omega((q-1)/t) where omega is the Teichmuller character on F-q, and g(chi) is the Gauss sum. For suitable tau(1) is an element of Ga1(Q(zeta(l), zeta(p))/Q) (i = 1,...,g), we show that Pi(i=1)(g) tau(l)(g(chi)) = p(alpha)((a+b root-t/2) such that 4p(h) = a(2) + tb(2) for some integers a and b where h is the class number of Q(root-t). We explicitly compute a mod (t/gcd(8, t)) and a mod p, in particular, a is congruent to a product of binomial coefficients modulo p. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:257 / 271
页数:15
相关论文
共 50 条