Impact of Automatic Feature Extraction in Deep Learning Architecture

被引:0
|
作者
Shaheen, Fatma [1 ]
Verma, Brijesh [1 ]
Asafuddoula, Md [1 ]
机构
[1] Cent Queensland Univ, Ctr Intelligent Syst, Brisbane, Qld, Australia
关键词
Image Classification; Feature Extraction; Deep-Learning; Convolutional Neural Network; Multi-Layer Perceptron;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents the impact of automatic feature extraction used in a deep learning architecture such as Convolutional Neural Network (CNN). Recently CNN has become a very popular tool for image classification which can automatically extract features, learn and classify them. It is a common belief that CNN can always perform better than other well-known classifiers. However, there is no systematic study which shows that automatic feature extraction in CNN is any better than other simple feature extraction techniques, and there is no study which shows that other simple neural network architectures cannot achieve same accuracy as CNN. In this paper, a systematic study to investigate CNN's feature extraction is presented. CNN with automatic feature extraction is firstly evaluated on a number of benchmark datasets and then a simple traditional Multi-Layer Perceptron (MLP) with full image, and manual feature extraction are evaluated on the same benchmark datasets. The purpose is to see whether feature extraction in CNN performs any better than a simple feature with MLP and full image with MLP. Many experiments were systematically conducted by varying number of epochs and hidden neurons. The experimental results revealed that traditional MLP with suitable parameters can perform as good as CNN or better in certain cases.
引用
收藏
页码:638 / 645
页数:8
相关论文
共 50 条
  • [41] Data anomaly detection with automatic feature selection and deep learning
    Jiang, Huachen
    Ge, Ensheng
    Wan, Chunfeng
    Li, Shu
    Quek, Ser Tong
    Yang, Kang
    Ding, Youliang
    Xue, Songtao
    STRUCTURES, 2023, 57
  • [42] Image Retrieval Using Latent Feature Learning By Deep Architecture
    Garg, Nishu
    Nikhitha, P.
    Tripathy, B. K.
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 663 - 666
  • [43] DeepCrack: A deep hierarchical feature learning architecture for crack segmentation
    Liu, Yahui
    Yao, Jian
    Lu, Xiaohu
    Xie, Renping
    Li, Li
    NEUROCOMPUTING, 2019, 338 : 139 - 153
  • [44] Unsupervised feature learning and automatic modulation classification using deep learning model
    Ali, Afan
    Fan Yangyu
    PHYSICAL COMMUNICATION, 2017, 25 : 75 - 84
  • [45] Deep Feature Extraction for Detection of COVID-19 Using Deep Learning
    Rafiq, Arisa
    Imran, Muhammad
    Alhajlah, Mousa
    Mahmood, Awais
    Karamat, Tehmina
    Haneef, Muhammad
    Alhajlah, Ashwaq
    ELECTRONICS, 2022, 11 (23)
  • [46] Novel Automatic Deep Learning Feature Extractor with Target Class Specific Feature Explanations
    Kuttichira, Deepthi Praveenlal
    Verma, Brijesh
    Rahman, Ashfaqur
    Wang, Lipo
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [47] Deep Learning Methods for Underwater Target Feature Extraction and Recognition
    Hu, Gang
    Wang, Kejun
    Peng, Yuan
    Qiu, Mengran
    Shi, Jianfei
    Liu, Liangliang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
  • [48] Feature Extraction and Classification of Music Content Based on Deep Learning
    Shi, Qianqiu
    Ko, Young Chun
    ADVANCES IN MULTIMEDIA, 2022, 2022
  • [49] Feature extraction using Deep Learning for Intrusion Detection System
    Ishaque, Mohammed
    Hudec, Ladislav
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS), 2019,
  • [50] ECG noise classification using deep learning with feature extraction
    Vibinkumar Vijayakumar
    Shaik Ummar
    Thomas J. Varghese
    Anu Elizabeth Shibu
    Signal, Image and Video Processing, 2022, 16 : 2287 - 2293