More explicit formulas for the matrix exponential

被引:0
|
作者
Cheng, HW
Yau, SST
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The matrix exponential plays an important role in the study of dynamical systems and linear systems. An elementary method is discussed for computing e(tA) for general A is an element of C-n X n. It is shown that this method can be applied to generate explicit formulas for e(tA) in various forms. Using this method, some well-known formulas are rederived, and some new formulas are also derived. As applications, explicit formulas for n = 3 or n = 4 are given. In each case, a characterization of e(tA) is also made, based on the entries of A alone. (C) Elsevier Science Inc., 1997.
引用
收藏
页码:131 / 163
页数:33
相关论文
共 50 条
  • [21] EXPLICIT FORMULAS FOR EXPONENTIAL OF 2Χ2 SPLIT-COMPLEX MATRICES
    Cakir, Hasan
    Ozdemir, Mustafa
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (02): : 518 - 532
  • [22] Numerically stable formulas for a particle-based explicit exponential integrator
    Nadukandi, Prashanth
    COMPUTATIONAL MECHANICS, 2015, 55 (05) : 903 - 920
  • [23] Explicit Formulas for the Fourth Moment of Three-term Exponential Sums
    Ai, Xiaochuan
    Chen, Jianhua
    Chen, Hua
    Zhang, Silan
    INTERNATIONAL JOINT CONFERENCE ON APPLIED MATHEMATICS, STATISTICS AND PUBLIC ADMINISTRATION (AMSPA 2014), 2014, : 254 - 260
  • [24] Explicit formulas for the exponential and logarithm of the Carlitz-Tate twist, and applications
    Hasegawa, Takehiro
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2024, 36 (01):
  • [25] Numerically stable formulas for a particle-based explicit exponential integrator
    Prashanth Nadukandi
    Computational Mechanics, 2015, 55 : 903 - 920
  • [26] Explicit formula for computing matrix exponential: An analytical approach
    Bensaoud I.
    Mouline M.
    Rendiconti del Circolo Matematico di Palermo, 2005, 54 (3) : 312 - 318
  • [27] Explicit formulas for the matrix with a multiple zero eigenvalue closest to a given normal matrix
    Ikramov, KD
    DOKLADY MATHEMATICS, 2004, 70 (02) : 762 - 764
  • [28] On explicit formulas of the principal matrix pth root by polynomial decompositions
    Abderraman Marrero, J.
    Ben Taher, R.
    El Khatabi, Y.
    Rachidi, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 435 - 443
  • [29] Explicit formulas for the constituent matrices. Application to the matrix functions
    Ben Taher, R.
    Rachidi, M.
    SPECIAL MATRICES, 2015, 3 (01): : 43 - 52
  • [30] More on explicit estimators for a banded covariance matrix
    Karlsson, Emil
    Singull, Martin
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2015, 19 (01): : 49 - 62