Local Charge Transport at the Interface of Semiconductor and Charge Transport Mediator

被引:7
|
作者
Zhang, Zemin [1 ]
Lindley, Sarah A. [1 ,2 ]
Chen, Tao [1 ]
Cheng, Xu [1 ]
Xie, Erqing [1 ]
Han, Weihua [1 ]
Toma, Francesca M. [3 ]
Cooper, Jason K. [3 ]
机构
[1] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
[2] Coreless Technol Inc, Santa Cruz, CA 95060 USA
[3] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
来源
ADVANCED OPTICAL MATERIALS | 2022年 / 10卷 / 21期
基金
美国国家科学基金会;
关键词
carrier losses; current mapping; effective barrier height; local charge transport; Schottky junction; ARTIFICIAL PHOTOSYNTHESIS; COPPER-OXIDE; PHOTOANODE; DYNAMICS; BEHAVIOR;
D O I
10.1002/adom.202201247
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Charge transport mediators are commonly used in photoelectronic devices to promote selective charge transport and mitigate carrier losses. However, related investigations are mainly carried out by the trial-and-error method, and a deeper understanding of its local charge transport behavior is still lacking. Herein, a comprehensive study is performed on a BiVO4/Ti3C2 photoanode to reveal its local charge transport properties by combing microprobe technologies and numerical computations. For the first time, a nano-Schottky junction is directly shown at the BiVO4/Ti3C2 interface and the band bending is quantified with promoted hole transport and prolonged photocarrier's lifetime. These mechanistic insights leverage a path to further optimize performance through interface engineering and achieve a photocurrent of 5.38 mA cm(-2) at 1.23 V versus reversible hydrogen electrode. This work provides deeper insight into the function of charge transport mediators in view of interface contact rather than material nature and demonstrates a strategy to improve photoelectrochemical performance through Fermi-level engineering.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Defect states and disorder in charge transport in semiconductor nanowires
    Ko, Dongkyun
    Zhao, X. W.
    Reddy, Kongara M.
    Restrepo, O. D.
    Mishra, R.
    Lemberger, T. R.
    Beloborodov, I. S.
    Trivedi, Nandini
    Padture, Nitin P.
    Windl, W.
    Yang, F. Y.
    Johnston-Halperin, E.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (04)
  • [22] Lyapunov stability of charge transport in miniband semiconductor superlattices
    Koronovskii, A. A.
    Hramov, A. E.
    Maximenko, V. A.
    Moskalenko, O. I.
    Alekseev, K. N.
    Greenaway, M. T.
    Fromhold, T. M.
    Balanov, A. G.
    PHYSICAL REVIEW B, 2013, 88 (16):
  • [23] Temperature gradient and transport of heat and charge in a semiconductor structure
    Titov, Oleg Yu.
    Gurevich, Yuri G.
    LOW TEMPERATURE PHYSICS, 2021, 47 (07) : 550 - 554
  • [24] SPATIOTEMPORAL DYNAMICS OF VERTICAL CHARGE TRANSPORT IN A SEMICONDUCTOR HETEROSTRUCTURE
    WACKER, A
    SCHOLL, E
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1992, 7 (12) : 1456 - 1463
  • [25] Analytical model of charge transport at organic semiconductor interfaces
    Li Xun-Shuan
    Peng Ying-Quan
    Yang Qing-Sen
    Xing Hong-Wei
    Lu Fei-Ping
    ACTA PHYSICA SINICA, 2007, 56 (09) : 5441 - 5445
  • [26] KINETICS OF CHARGE TRANSPORT IN SEMICONDUCTOR-INSULATOR STRUCTURES
    AKOPYAN, RM
    BRODZELI, MI
    KONSTANTINOV, GD
    POLYAN, RA
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1978, 12 (07): : 743 - 747
  • [27] A review for polaron dependent charge transport in organic semiconductor
    Lu, Nianduan
    Li, Ling
    Geng, Di
    Liu, Ming
    ORGANIC ELECTRONICS, 2018, 61 : 223 - 234
  • [28] FLUX METHOD CALCULATION OF CHARGE TRANSPORT IN SEMICONDUCTOR ELECTRODES
    BUONCRISTIANI, AM
    THOMCHICK, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 409 - 409
  • [29] Minisymposium "Nonlinear Charge and Spin Transport in Semiconductor Nanostructures"
    Platero, G.
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2006, 2008, 12 : 402 - 403
  • [30] Semiconductor charge transport driven by a picosecond strain pulse
    Fowler, D. R.
    Akimov, A. V.
    Balanov, A. G.
    Greenaway, M. T.
    Henini, M.
    Fromhold, T. M.
    Kent, A. J.
    APPLIED PHYSICS LETTERS, 2008, 92 (23)