Transfer Learning for Drug Discovery

被引:184
|
作者
Cai, Chenjing [1 ]
Wang, Shiwei [2 ]
Xu, Youjun [3 ,4 ]
Zhang, Weilin [5 ]
Tang, Ke [6 ]
Ouyang, Qi [1 ,7 ]
Lai, Luhua [1 ,3 ,4 ]
Pei, Jianfeng [1 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Quantitat Biol, Beijing 100871, Peoples R China
[2] Peking Univ, Acad Adv Interdisciplinary Studies, PTN Grad Program, Beijing 100871, Peoples R China
[3] Peking Univ, BNLMS, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[4] Peking Univ, Peking Tsinghua Ctr Life Sci, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[5] Beijing Intelligent Pharma Technol Co Ltd, Beijing 100083, Peoples R China
[6] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
[7] Peking Univ, Sch Phys, State Key Lab Artificial Microstruct & Mesoscop P, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
DEEP NEURAL-NETWORKS; SCORING FUNCTIONS; PDBBIND DATABASE;
D O I
10.1021/acs.jmedchem.9b02147
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The data sets available to train models for in silico drug discovery efforts are often small. Indeed, the sparse availability of labeled data is a major barrier to artificial-intelligence-assisted drug discovery. One solution to this problem is to develop algorithms that can cope with relatively heterogeneous and scarce data. Transfer learning is a type of machine learning that can leverage existing, generalizable knowledge from other related tasks to enable learning of a separate task with a small set of data. Deep transfer learning is the most commonly used type of transfer learning in the field of drug discovery. This Perspective provides an overview of transfer learning and related applications to drug discovery to date. Furthermore, it provides outlooks on the future development of transfer learning for drug discovery.
引用
收藏
页码:8683 / 8694
页数:12
相关论文
共 50 条
  • [1] Deep Learning for Drug Discovery: A Study of Identifying High Efficacy Drug Compounds Using a Cascade Transfer Learning Approach
    Zhuang, Dylan
    Ibrahim, Ali K.
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [2] Machine Learning in Drug Discovery
    Hochreiter, Sepp
    Klambauer, Guenter
    Rarey, Matthias
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (09) : 1723 - 1724
  • [4] Machine Learning in Drug Discovery
    Klambauer, Guenter
    Hochreiter, Sepp
    Rarey, Matthias
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) : 945 - 946
  • [5] Machine learning in preclinical drug discovery
    Catacutan, Denise B.
    Alexander, Jeremie
    Arnold, Autumn
    Stokes, Jonathan M.
    [J]. NATURE CHEMICAL BIOLOGY, 2024, 20 (08) : 960 - 973
  • [6] Multiple Kernel Learning for Drug Discovery
    Pilkington, Nicholas C. V.
    Trotter, Matthew W. B.
    Holden, Sean B.
    [J]. MOLECULAR INFORMATICS, 2012, 31 (3-4) : 313 - 322
  • [7] Machine learning in chemoinformatics and drug discovery
    Lo, Yu-Chen
    Rensi, Stefano E.
    Torng, Wen
    Altman, Russ B.
    [J]. DRUG DISCOVERY TODAY, 2018, 23 (08) : 1538 - 1546
  • [8] Machine Learning in Drug Discovery: A Review
    Dara, Suresh
    Dhamercherla, Swetha
    Jadav, Surender Singh
    Babu, C. H. Madhu
    Ahsan, Mohamed Jawed
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (03) : 1947 - 1999
  • [9] Active learning in the drug discovery process
    Warmuth, MK
    Rätsch, G
    Mathieson, M
    Liao, J
    Lemmen, C
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 1449 - 1456
  • [10] The rise of deep learning in drug discovery
    Chen, Hongming
    Engkvist, Ola
    Wang, Yinhai
    Olivecrona, Marcus
    Blaschke, Thomas
    [J]. DRUG DISCOVERY TODAY, 2018, 23 (06) : 1241 - 1250