Machine learning in chemoinformatics and drug discovery

被引:544
|
作者
Lo, Yu-Chen [1 ]
Rensi, Stefano E. [1 ]
Torng, Wen [1 ]
Altman, Russ B. [1 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
关键词
ARTIFICIAL NEURAL-NETWORKS; COMPOUND CLASSIFICATION; MOLECULAR SIMILARITY; LINEAR-REGRESSION; RANDOM FOREST; QSAR; PREDICTION; MODEL; DESCRIPTORS; SEARCH;
D O I
10.1016/j.drudis.2018.05.010
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical 'big' data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.
引用
收藏
页码:1538 / 1546
页数:9
相关论文
共 50 条
  • [1] Chemoinformatics and drug discovery
    Xu, J
    Hagler, A
    [J]. MOLECULES, 2002, 7 (08): : 566 - 600
  • [2] From chemoinformatics to deep learning: an open road to drug discovery
    Ferreira, Leonardo L. G.
    Andricopulo, Adriano D.
    [J]. FUTURE MEDICINAL CHEMISTRY, 2019, 11 (05) : 371 - 374
  • [3] Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery
    Raquel Rodríguez-Pérez
    Jürgen Bajorath
    [J]. Journal of Computer-Aided Molecular Design, 2022, 36 : 355 - 362
  • [4] Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery
    Rodriguez-Perez, Raquel
    Bajorath, Juergen
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2022, 36 (05) : 355 - 362
  • [6] Machine Learning in Drug Discovery
    Hochreiter, Sepp
    Klambauer, Guenter
    Rarey, Matthias
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (09) : 1723 - 1724
  • [7] Machine Learning in Drug Discovery
    Klambauer, Guenter
    Hochreiter, Sepp
    Rarey, Matthias
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) : 945 - 946
  • [8] Chemoinformatics: A tool for modern drug discovery
    Karthikeyan, M.
    Krishnan, S.
    [J]. International Journal of Information Technology and Management, 2002, 1 (01) : 69 - 82
  • [9] Machine learning methods in chemoinformatics
    Mitchell, John B. O.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2014, 4 (05) : 468 - 481
  • [10] Chemoinformatics Strategies for Leishmaniasis Drug Discovery
    Ferreira, Leonardo L. G.
    Andricopulo, Adriano D.
    [J]. FRONTIERS IN PHARMACOLOGY, 2018, 9